LATTICE MODELS

EXAMINATION EPFL 2022-23

Justify all your answers. You do not have to reprove any result seen in the lectures.

Exercise 1.

In the following graph, compute the probability that a simple random walk starting from x hits A before B.

Exercise 2.

Consider the following random snake game $(X_n)_{n\geq 0}$ in \mathbb{Z}^2 :

- The snake starts at X₀ = (0,0).
 For every n ≥ 0, X_{n+1} is chosen uniformly at random among the neighbors of X_n in Z² \ {X₀,..., X_{n-1}}.
 If there are no such neighbors, the snake dies.

Show that the snake dies eventually with probability 1.

Exercise 3.

Let $\Omega \subset \mathbb{C}$ be a smooth domain such that $e^{2\pi i/3}\Omega = \Omega$, i.e. Ω is invariant under a $\frac{2\pi}{3}$ rotation around the origin, and let $x \in \partial \Omega \setminus \{0\}$. For $\delta > 0$, let Ω_{δ} be the δ -meshed discretization of Ω by a honeycomb lattice, and let x_{δ} be a point of Ω_{δ} at distance $\leq \delta$ from x.

Consider critical percolation on the faces of Ω_{δ} , i.e. independent random colouring in black/white of the faces with probability 1/2. Compute, with justification,

 $\lim_{\delta \to 0} \mathbb{P}\left\{ x_{\delta} \text{ and } 0 \text{ are separated by a black path from } e^{2\pi i/3} x_{\delta} \text{ and } e^{4\pi i/3} x_{\delta} \right\}.$

FIGURE 1. A domain with the same symmetry as Ω

Exercise 4.

Consider a graph G = (V, E) with $V = B \cup W$ such that if $b, b' \in B$ then $b \not\sim b'$ and if $w, w' \in W$ then $w \not\sim w'$, with |B| = |W| = n. Let A be the $n \times n$ reduced adjacency matrix indexed by $B \times W$, i.e.

$$A_{bw} = \begin{cases} 1 & \text{if } b \sim w \\ 0 & \text{if } b \not\sim w. \end{cases}$$

Suppose that G has no dimer cover. Show that $\det A = 0$.

Exercise 5.

Consider X_n a simple random walk on \mathbb{Z}^2 starting from (0,0) and \tilde{X}_n a simple random walk on \mathbb{Z}^2 starting from (1,1). Show that X_n and \tilde{X}_n can be coupled so that with probability 1, there exists a (random) N such that $X_{N+k} = \tilde{X}_{N+k}$ for all $k \in \mathbb{N}$.

Exercise 6.

Let G = (V, E) be a finite graph, let W be a subset of V, let v be in $V \setminus W$ and let w be in W. We consider a LERW $v = X_0, \ldots, X_T = w$ from v to w. Let τ be the stopping time such that

$$\begin{aligned} X_i \in V \setminus W \quad \text{for } 0 \leq i \leq \tau \\ X_{\tau+1} \in W. \end{aligned}$$

Show that the law of $X_{\tau+1}, \ldots, X_T$ knowing X_0, \ldots, X_τ is that of a LERW in $V \setminus \{X_0, \ldots, X_{\tau-1}\}$ from X_τ to w.

Exercise 7.

In this exercise we consider a modified version of Wilson's algorithm on a graph G = (V, E) using Antichronological Loop-Erased Random Walks (ACLERW).

For a path (X_0, \ldots, X_n) in G, we define $\lambda^{\leftarrow}(X_0, \ldots, X_n)$ as the antichronological loop erasure of (X_0, \ldots, X_n) , obtained by removing the loops it has formed backwards in time, i.e. we perform the classical LERW erasure procedure on the path $X_n, X_{n-1}, \ldots, X_0$.

Question 1. Draw an example of a graph and a path where the antichronological loop erasure is different from the usual loop erasure.

For $W \subset V$ and $x \in V \setminus W$, an ACLERW from x to W is defined as $\lambda^{\leftarrow}(X_0, \ldots, X_{\tau})$. where (X_0, \ldots, X_{τ}) is a simple random walk on G starting at x and stopped upon hitting W (at time τ).

Question 2. Show that constructing a spanning tree by replacing the (classical) LERWs by ACLERWs in Wilson's algorithm also yields a uniform spanning tree.

Exercise 8.

Let I_n denote the discrete interval $[1, n] \cap \mathbb{Z}$ with boundary $\partial_n = \{0, n+1\}$ and let $\overline{I}_n = I_n \cup \partial_n$. Additionally, let $Q_n = I_n \times I_n$, $\partial Q_n = (\partial_n \times I_n) \cup (I_n \times \partial_n)$, and $\overline{Q}_n = Q_n \cup \partial Q_n$. We also define the corresponding dual graphs: $I_n^* = [0, n+1] \cap (\mathbb{Z} + \frac{1}{2})$ and $Q_n^* = I_n^* \times I_n^*$.

For $\beta > 0$, we consider the Ising model with inverse temperature β (and with zero magnetic field) on Q_n , with + boundary conditions on $\partial_n \times I_n$ (i.e. the vertical sides) and – boundary conditions on $I_n \times \partial_n$ (i.e. the horizonal sides); let $Z_n^{\pm\pm}(\beta)$ denote the corresponding partition function.

We also consider another Ising model on the same graph, with the same temperature and magnetic field, but with pure + boundary conditions; let $Z_n^+(\beta)$ denote the corresponding partition function.

Show that

$$\frac{Z_{n}^{\pm\pm}\left(\beta\right)}{Z_{n}^{+}\left(\beta\right)}$$

is equal to

$$\mathbb{E}\left[\sigma_{\rm sw}\sigma_{\rm se}\sigma_{\rm ne}\sigma_{\rm nw}\right],$$

where the expectation is taken for an Ising model on Q_n^* with free boundary conditions (and zero magnetic field) at inverse temperature $\beta^* > 0$, where β^* is such that $\tanh(\beta^*) = e^{-2\beta}$, and

FIGURE 2. The vertices of Q_n (in black), ∂Q (in green) and Q_n^* (in red) for n = 4. The edges of \overline{Q}_n are also shown (in black), as are the edges of Q_n^* (in red and dashed).

Exercise 9.

The goal of this exercise is to illustrate a link between simple random walks (SRW) and critical percolation on the faces of the honeycomb lattice.

Let \triangleright be the equilateral triangle with vertices $1, \frac{\sqrt{3}}{2}i, -\frac{\sqrt{3}}{2}i$. For $\delta > 0$, we consider two discretizations of \triangleright :

 $\begin{array}{l} -- \hspace{0.1cm} \operatorname{let} \triangleright^h_{\delta} \hspace{0.1cm} \text{denote a discretization of} \triangleright \hspace{0.1cm} \text{by a } \delta \text{-meshed honeycomb lattice.} \\ -- \hspace{0.1cm} \operatorname{let} \triangleright^s_{\delta} \hspace{0.1cm} \text{denote the discretization of} \triangleright \hspace{0.1cm} \text{by the } \delta \text{-meshed square lattice } \delta \mathbb{Z}^2. \end{array}$

We then use \mathbb{P}_{δ} to denote the measure associated with critical percolation on the faces of $\triangleright_{\delta}^{h}$, and, for $x \in \triangleright$, consider a SRW $(X_{n}^{x})_{n\geq 0}$ on $\delta\mathbb{Z}^{2}$ starting from a point $x_{\delta} \in \triangleright_{\delta}^{s}$ at minimal distance from x, stopped at the first exit time τ_{δ}^{x} of $\triangleright_{\delta}^{s}$ (i.e. $\tau_{\delta}^{x} = \inf \{n : X_{n}^{x} \in \delta\mathbb{Z}^{2} \setminus \triangleright_{\delta}^{s}\}$).

Show that for any $z \in \triangleright$, we have

$$\lim_{\delta \to 0} \mathbb{P}_{\delta} \left\{ \begin{aligned} z \text{ and } 1 \text{ are separated in } \triangleright^{h}_{\delta} \text{ by a} \\ \text{path of black hexagons from } \pm \frac{\sqrt{3}}{2}i \end{aligned} \right\} = \lim_{\delta \to 0} \mathbb{E}_{\delta} \left[\Re \mathfrak{e} \left(X^{z}_{\tau^{z}_{\delta}} \right) \right].$$

Exercise 10.

Consider the graphs $I_n, I_n^*, Q_n, \partial Q_n, \bar{Q}_n$, and Q_n^* as in Exercise 8.

We first sample a union S_T of random trees on \bar{Q}_n with the following algorithm:

- Start with $\mathcal{S}_0 = \partial Q_n$.
- As long as there are vertices in $\bar{Q}_n \setminus S_j$, pick a random vertex in it, and run a loop-erased random walk Λ_j from it to \mathcal{S}_j .
- Define $S_{j+1} = S_j \cup \Lambda$. Stop as soon as S_T contains all the vertices of \bar{Q}_n .

We then take the set of edges \mathcal{E} of Q_n^* that do not cross an edge of \mathcal{S}_T . Show that the edges of \mathcal{E} form a uniform spanning tree of Q_n^* .

Bonus question. What was your favorite topic covered in class?