
LATTICEMODELS
EXAMINATION

EPFL 2022-23

Justify all your answers. You do not have to reprove
any result seen in the lectures.



Exercise 1.
In the following graph, compute the probability that a simple random walk starting
from x hits A before B.

A

B

x
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Exercise 2.
Consider the following random snake game (Xn)n≥0 in Z2:

— The snake starts at X0 = (0, 0).
— For every n ≥ 0, Xn+1 is chosen uniformly at random among the neighbors

of Xn in Z2 \ {X0, . . . , Xn−1}.
— If there are no such neighbors, the snake dies.

Show that the snake dies eventually with probability 1.
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Exercise 3.
Let Ω ⊂ C be a smooth domain such that e2πi/3Ω = Ω, i.e. Ω is invariant under
a 2π

3 rotation around the origin, and let x ∈ ∂Ω \ {0}. For δ > 0, let Ωδ be the
δ-meshed discretization of Ω by a honeycomb lattice, and let xδ be a point of Ωδ

at distance ≤ δ from x.

Consider critical percolation on the faces of Ωδ, i.e. independent random colour-
ing in black/white of the faces with probability 1/2. Compute, with justification,

lim
δ→0

P
{
xδ and 0 are separated by a black path from e2πi/3xδ and e4πi/3xδ

}
.

0

Figure 1. A domain with the same symmetry as Ω
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Exercise 4.
Consider a graph G = (V,E) with V = B ∪ W such that if b, b′ ∈ B then b ̸∼ b′

and if w,w′ ∈ W then w ̸∼ w′, with |B| = |W | = n. Let A be the n × n reduced
adjacency matrix indexed by B ×W , i.e.

Abw =

{
1 if b ∼ w

0 if b ̸∼ w.

Suppose that G has no dimer cover. Show that detA = 0.
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Exercise 5.
Consider Xn a simple random walk on Z2 starting from (0, 0) and X̃n a simple

random walk on Z2 starting from (1, 1). Show that Xn and X̃n can be coupled so

that with probability 1, there exists a (random) N such that XN+k = X̃N+k for all
k ∈ N.
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Exercise 6.
Let G = (V,E) be a finite graph, let W be a subset of V , let v be in V \W and let
w be in W . We consider a LERW v = X0, . . . , XT = w from v to w. Let τ be the
stopping time such that

Xi ∈ V \W for 0 ≤ i ≤ τ

Xτ+1 ∈ W.

Show that the law of Xτ+1, . . . , XT knowing X0, . . . , Xτ is that of a LERW in
V \ {X0, . . . , Xτ−1} from Xτ to w.
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Exercise 7.
In this exercise we consider a modified version of Wilson’s algorithm on a graph
G = (V,E) using Antichronological Loop-Erased Random Walks (ACLERW).

For a path (X0, . . . , Xn) in G, we define λ← (X0, . . . , Xn) as the antichronolog-
ical loop erasure of (X0, . . . , Xn), obtained by removing the loops it has formed
backwards in time, i.e. we perform the classical LERW erasure procedure on the
path Xn, Xn−1, . . . , X0.

Question 1. Draw an example of a graph and a path where the antichronological
loop erasure is different from the usual loop erasure.

ForW ⊂ V and x ∈ V \W , an ACLERW from x toW is defined as λ← (X0, . . . , Xτ ).
where (X0, . . . , Xτ ) is a a simple random walk on G starting at x and stopped upon
hitting W (at time τ).

Question 2. Show that constructing a spanning tree by replacing the (classical)
LERWs by ACLERWs in Wilson’s algorithm also yields a uniform
spanning tree.
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Exercise 8.
Let In denote the discrete interval [1, n]∩Z with boundary ∂n = {0, n+ 1} and let
Īn = In∪∂n. Additionally, let Qn = In×In, ∂Qn = (∂n × In)∪(In × ∂n), and Qn =
Qn ∪ ∂Qn. We also define the corresponding dual graphs: I∗n = [0, n+ 1]∩

(
Z+ 1

2

)
and Q∗n = I∗n × I∗n.

For β > 0, we consider the Ising model with inverse temperature β (and with
zero magnetic field) on Qn, with + boundary conditions on ∂n×In (i.e. the vertical
sides) and − boundary conditions on In × ∂n (i.e. the horizonal sides); let Z±±n (β)
denote the corresponding partition function.

We also consider another Ising model on the same graph, with the same temper-
ature and magnetic field, but with pure + boundary conditions; let Z+

n (β) denote
the corresponding partition function.

Show that
Z±±n (β)

Z+
n (β)

is equal to
E [σswσseσneσnw] ,

where the expectation is taken for an Ising model on Q∗n with free boundary con-
ditions (and zero magnetic field) at inverse temperature β∗ > 0, where β∗ is such
that tanh (β∗) = e−2β , and

sw =

(
1

2
,
1

2

)
nw =

(
n+

1

2
,
1

2

)
ne =

(
n+

1

2
, n+

1

2

)
se =

(
n+

1

2
,
1

2

)
.

sw se

nw ne

Figure 2. The vertices of Qn (in black), ∂Q (in green) and Q∗n
(in red) for n = 4. The edges of Qn are also shown (in black), as
are the edges of Q∗n (in red and dashed).
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Exercise 9.
The goal of this exercise is to illustrate a link between simple random walks (SRW)
and critical percolation on the faces of the honeycomb lattice.

Let ▷ be the equilateral triangle with vertices 1,
√
3
2 i,−

√
3
2 i. For δ > 0, we

consider two discretizations of ▷:

— let ▷hδ denote a discretization of ▷ by a δ-meshed honeycomb lattice.
— let ▷sδ denote the discretization of ▷ by the δ-meshed square lattice δZ2.

We then use Pδ to denote the measure associated with critical percolation on the
faces of ▷hδ , and, for x ∈ ▷, consider a SRW (Xx

n)n≥0 on δZ2 starting from a point

xδ ∈ ▷sδ at minimal distance from x, stopped at the first exit time τxδ of ▷sδ (i.e.
τxδ = inf

{
n : Xx

n ∈ δZ2 \ ▷sδ
}
).

Show that for any z ∈ ▷, we have

lim
δ→0

Pδ

{
z and 1 are separated in ▷hδ by a

path of black hexagons from ±
√
3
2 i

}
= lim

δ→0
Eδ

[
ℜe

(
Xz

τz
δ

)]
.
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Exercise 10.
Consider the graphs In, I

∗
n, Qn, ∂Qn, Q̄n, and Q∗n as in Exercise 8.

We first sample a union ST of random trees on Q̄n with the following algorithm:

— Start with S0 = ∂Qn.
— As long as there are vertices in Q̄n \Sj , pick a random vertex in it, and run

a loop-erased random walk Λj from it to Sj .
— Define Sj+1 = Sj ∪ Λ.
— Stop as soon as ST contains all the vertices of Q̄n.

We then take the set of edges E of Q∗n that do not cross an edge of ST . Show that
the edges of E form a uniform spanning tree of Q∗n.
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Bonus question.
What was your favorite topic covered in class?
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