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Exercise 1. Introduction

Binomial coefficients

1. Let k,n be non-negative integers. Give three definitions of
(

n
k

)
: an algebraic one, a combinatorial one,

and its value.

Solution. The three definitions are

(a) The coefficient in front of xk in (1 + x)
n (or the coefficient in front of akbn−k in (a+ b)

n).

(b) The number of ways to choose k elements in a set of n elements.

(c) Is equal to
n!

k! (n− k)!

2. Prove that
(

n
k

)
=

(
n

n− k

)
.

Solution. We give three solutions

(a) Since (a+ b)
n
= (b+ a)

n ,
(

n
k

)
is the coefficient in front of akbn−k in (b+ a)

n so it is the coefficient

in front of bn−kak in (b+ a)
n so it is equal to(

n
n− k

)
.

(b) To choose k elements out of n is equivalent to discard n− k out of n.

(c) We have
(

n
n− k

)
= n!

(n−k)!(n−(n−k))! =
n!

k!(n−k)! =

(
n
k

)
.

3. Show that (
n
k

)
+

(
n

k + 1

)
=

(
n+ 1
k + 1

)
.

Solution. We give three solutions

(a)
(

n+ 1
k + 1

)
is the coefficient in front of xk+1 in (1 + x)

n+1
. Yet, (1 + x)

n+1
= (1 + x) (1 + x)

n

=(1 + x)
n
+ x (1 + x)

n. Thus
(

n+ 1
k + 1

)
is the sum of the coefficient in front of xk+1 in (1 + x)

n

and the coefficient in front of xk in (1 + x)
n.

(b) Let us consider the integers {1, · · · , n+ 1}. In order to choose k+1 elements in {1, · · · , n+ 1}, either
one choose n+1 and then we need to choose k elements in {1, · · · , n} or one discards n+1 and then
we need to choose k + 1 elements in {1, · · · , n}.

(c) We have (
n
k

)
+

(
n

k + 1

)
=

n!

k! (n− k)!
+

n!

(k + 1)! (n− k − 1)!

=
n!

(k + 1)! (n− k)!
(k + 1 + n− k)

=
(n+ 1)!

(k + 1)! (n− k)!
=

(
n+ 1
k + 1

)
.

4. What is the value of
∑n

k=0

(
n
k

)
?

Solution. We give two solutions
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(a) We have
∑n

k=0

(
n
k

)
=
∑n

k=0

(
n
k

)
1k1n−k = (1 + 1)

n
= 2n.

(b)
∑n

k=0

(
n
k

)
counts the number of subsets in a set with n elements. One has to choose if each

element is included or not, thus there are 2 possibilities per element of the set:
∑n

k=0

(
n
k

)
= 2n.

5. Prove that ∑
k1+k2=k

k1,k2≥0

(
n1

k1

)(
n2

k2

)
=

(
n1 + n2

k

)

Solution. We give two solutions

(a)
∑

k1+k2=k

k1,k2≥0

(
n1

k1

)(
n2

k2

)
is the coefficient of xk in (1 + x)

n1 (1 + x)
n2 = (1 + x)

n1+n2 , so it is equal

to
(

n1 + n2

k

)
.

(b) Let us consider the integers {1, · · · , n1, · · · , n1 + n2}. In order to choose k elements in {1, · · · , n1, · · · , n1 + n2},
one needs to choose k1, the number of elements to take from {1, · · · , n1} and k2 the number of el-
ements to take from {n1, · · · , n1 + n2} (and of course k1 + k2 = k) and then chose k1, elements in

{1, · · · , n1} (
(

n1

k1

)
possibilities)and k2 elements in {n1, · · · , n1 + n2} (

(
n2

k2

)
possibilities). This

gives us the equality
∑

k1+k2=k

k1,k2≥0

(
n1

k1

)(
n2

k2

)
=

(
n1 + n2

k

)
.

Stirling approximation

1. Recall the Stirling approximation.

Solution. Stirling’s formula is n! =
√
2πn

(
n
e

)n (
1 +O

(
n−1

))
.

2. Show that
1

22n

(
2n
n

)
∼ 1√

πn
,

as n → ∞.

Solution. This is a simple computation.

Probabilities

1. Let A,B ⊂ (Ω,A,P) , be two events. What does it means that they are independent ?

Solution. It means that P (A ∩B) = P (A)P (B) .

2. What is the definition of the conditional probability P (A|B)? What is the value of P (A|B) if A and B
are independent ?

Solution. We have P (A|B) = P(A∩B)
P(B) which is equal to P (A) if A and B are independent.

3. Let X be a non-negative random variable. State and prove the Markov inequality.

Solution. The Markov inequality is the fact that for any a ≥ 0,

P (X ≥ a) ≤ E (X)

a
.

The proof goes as follows: a11X≥a ≤ X since X is non-negative and computing the expectation, one gets
the inequality.

4. Give the definition of a (discrete time) Markov process.

Solution. A random process (Xn)n∈N such that for any n ∈ N, any m ∈ N, any (x1, · · · , xn+m),

P
(
Xn+1 = xn+1, . . . , Xn+m = xn+m | X1 = x1, . . . , Xn = xn

)
= P (Xn+1 = xn+1, . . . , Xn+m = xn+m | Xn = xn) .
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5. Let G be a general graph, explain what a simple random walk on G is.

Solution. A Markov process which jumps at each time, independently from the past, uniformly to one
of its neighbours.

Recall that a simple random walk on a graph is called recurrent if it returns to the starting point with
probability 1, and transient otherwise. Recall that a simple random walk (Sn)n≥0 on a connected graph G,
starting from v ∈ G, is recurrent if and only if

∞∑
n=0

P (Sn = v) = ∞. (0.1)

Remark. In the course you saw that a simple random walk (Sn)n≥∞ is recurrent if and only if E [Nd] = ∞
where Nd is the number of visits at the starting point v. The relation with the statement above is obtained
using the relation Nd =

∑∞
n=0 1{Sn=v}, and using the linearity of the expectation:

E[Nd] =

∞∑
n=0

E[1{Sn=v}] =

∞∑
n=0

P (Sn = v) .

Exercise 2. Recurrence/transience theorem for simple random walks on the square lattice Zd, d ≥ 1.
Let

(
S
(d)
n

)
n≥0

be the simple random walk on Zd such that S
(d)
0 = 0.

1. d = 1 Use Stirling’s formula1 to show that, in one dimension,

P
(
S
(1)
2n = 0

)
∼ 1√

πn
.

Deduce that (S
(1)
n )n≥0 is recurrent.

Solution. In order for the simple random walk on Z to come back to 0 in 2n steps, it must make n
positive steps and n negative steps. Thus among the 2n possible walks (at each step, the walk has 2
choices), the number of walks coming back to the origin in 2n steps is equal to the number of ways to
choose n positive steps in the 2n total steps. So

P
(
S
(1)
2n = 0

)
=

1

22n

(
2n
n

)
=

(2n)!

(n!)
2
22n

.

Using Stirling’s formula on the factorials immediately gives the result. The recurrence property follows
from (0.1).

2. d = 2 The goal is to prove that the simple random walk on Z2 is recurrent.

1. By enumerating the different cases, show that

P
(
S
(2)
2n = 0

)
=

(
1

22n

(
2n
n

))2

. (0.2)

Solution. Among the 42n possible walks (4 choices at each step), the number of walks coming back to
the origin in 2n steps can be obtained by

choosing 2j steps in the x direction

(
2n

2j

)

choosing j positive steps among these 2j steps

(
2j

j

)

choosing n− j positive steps among the 2(n− j)

(
2 (n− j)

n− j

)
remaining steps (in y direction)

1Stirling’s formula is n! =
√
2πn

(
n
e

)n (
1 +O

(
n−1

))
.
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Thus, the number of such walks is equal to

n∑
j=0

(
2n
2j

)(
2j
j

)(
2 (n− j)
n− j

)
=

n∑
j=0

(2n)!

(2j)! (2n− 2j)!

(2j)!

j!j!

(2 (n− j))!

(n− j)! (n− j)!

=
(2n)!

n!n!

n∑
j=0

n!n!

j!j! (n− j)! (n− j)!

=
(2n)!

n!n!

n∑
j=0

(
n
j

)(
n

n− j

)

The last sum is equal to (2n)!
n!n! . Indeed either one can see that this is the coefficient of xn in (1 + x)

n
(1 + x)

n

which is equal also to the coefficient of xn in (1 + x)
2n, or one can use the following combinatorial proof:

in order to pick n elements in a bag of 2n elements, I split the bag in 2 smaller bags of equal size n (in an
arbitrary way) and then I pick j elements in the first bag and n− j in the second bag.

Thus P
(
S
(2)
2n = 0

)
=
(

1
22n

(2n)!
n!n!

)2
, which is what we needed to prove.

1. Observe that P
(
S
(2)
2n = 0

)
is equal to P

(
S
(1)
2n = 0

)2
. Find a probabilistic proof of Equation (0.2).

Solution. The intuition behind the equality

P
(
S
(2)
2n = 0

)
= P

(
S
(1)
2n = 0

)2
is that one can represent (S(2)

n )n≥0 using two independent uni-dimensional random walks. Beginning
at the origin, suppose at every step we do SRW in the x and y directions independently. Then we will
move diagonally in Z2, and the resulting law of the walk in the rotated diagonal lattice is precisely
that of a 2 dimensional simple random walk. Then we return to the origin in 2n steps if and only
if the independent 1 dimensional SRWs both come back to zero, so we get the square of the one
dimensional estimate.
Equivalently, one could have considered the projection of Sk = (Xk, Yk) on the x and y axis. The
projection Xk is clearly not a simple random walk since it stays sometimes at the same place. Yet
Xk + Yk and Xk − Yk are two processes which always either increase or decrease by 1. Besides
{Sk = 0} = {Xk + Yk = 0 and Xk − Yk = 0} . At last, it is easy to see that Xk + Yk and Xk − Yk

are two independent random walks (consider the way (Xk + Yk, Xk − Yk) moves from time k to time
k + 1).

2. Deduce from Equation (0.2) that (S
(2)
n )n≥0 is recurrent.

Solution. From the part 1. we deduce that P
(
S
(2)
2n = 0

)
∼ 1

πn . The recurrence property follows
from (0.2).

3. d = 3 By a simple enumeration argument, show that

P
(
S
(3)
2n = 0

)
=

1

22n

(
2n
n

) ∑
j,k≥0

j+k≤n

(
n!

3nk!j! (n− k − j)!

)2

and deduce that a simple random walk on Z3 is transient.

Solution. There exists 1
62n different paths that the random walk can follow during the first 2n steps (it

has 3 choices at each step). We need to compute the number of paths of length 2n in Z3 which begin and
come back to 0. We need to choose :
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2k times (among the 2n) at which the path will go in the x direction

(
2n

2k

)

2j times (among the 2n− 2k left) at which the path will go in the y direction

(
2n− 2k

2j

)

k times (among the 2k) at which the path will go "up" in the x direction

(
2k

k

)

j times (among the 2j) at which the path will go "up" in the y direction

(
2j

j

)

n− k − j times (among the 2(n− k − j)) at which the path will go "up"

(
2n− 2k − 2j

n− k − j

)
in the z direction

This gives a number of paths equal to:∑
j,k≥0

j+k≤n

(
2n
2k

)(
2n− 2k

2j

)(
2k
k

)(
2j
j

)(
2n− 2k − 2j
n− k − j

)
,

which after a little massage gives (
2n
n

) ∑
j,k≥0

j+k≤n

(
n!

k!j! (n− k − j)!

)2

,

and thus

P
(
S
(3)
2n = 0

)
=

1

62n

(
2n
n

) ∑
j,k≥0

j+k≤n

(
n!

k!j! (n− k − j)!

)2

=
1

22n

(
2n
n

) ∑
j,k≥0

j+k≤n

(
n!

3nk!j! (n− k − j)!

)2

.

For the assertion about the transience of the random walk, we need to show that
∑

n P
(
S
(3)
2n = 0

)
< ∞: we

need to give an upper bound on P
(
S
(3)
2n = 0

)
which is summable. The first part 1

22n

(
2n
n

)
was already

studied it is O
(

1√
n

)
. It remains to bound

∑
j,k≥0

j+k≤n

(
n!

3nk!j!(n−k−j)!

)2
and in particular n!

k!j!(n−k−j)! . Let us

remark that if a < b then a!b! ≥ (a+ 1)!(b − 1)! since it is equivalent to b ≥ a + 1. Thus a!b!c! decreases
when the distance between any two of a; b; c decreases. We conclude that n!

k!j!(n−k−j)! is maximized among

the cases where j,k, n− j − k are of order n/3. Thus n!
3nk!j!(n−k−j)! ≤ O

(
3−n n!

(⌊n/3⌋!)3

)
= O

(
n−1

)
using

Stirling formula.

Now :
P
(
S
(3)
2n = 0

)
≤ c

n3/2

∑
j,k≥0

j+k≤n

n!

3nk!j! (n− k − j)!
=

c

n3/2

since the sum of the multinomial coefficients is precisely 3n. This allows us to conclude about the transience
of the random walk in dimension 3.

Remark. Let us remark that the brutal majoration which would consist in majoring
(

n!
3nk!j!(n−k−j)!

)2
by

O
(
n−2

)
and the sum by the number of elements (of order (O

(
n2
)
) ) times O

(
n−2

)
would have given us

a majoration P
(
S
(3)
2n = 0

)
≤ c

n1/2 and would have not helped us.

4. d ≥ 3 Prove that it follows from the previous results that Zd is transient for d > 3.

Solution. Given an SRW on Zd for d > 3, consider its projection Sn to the first three coordinates. This
has a law of a Markov random walk on Z3 started at the origin which at every step can move to one of
its 6 neighbours with probability 1

2d , or stay at the same point with probability 1− 6
2d . But one obtains

a SRW in Z3 by disregarding the steps where the first three coordinates do not move. So our SRW on Zd

does not return to zero in its first three coordinates infinitely often, let alone to the origin.
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