
LATTICE MODELS SOLUTION SHEET 12 EPFL AUTUMN 2024

For exercises 1, 2 and 3, we consider the Ising model with + boundary conditions on the square lattice inside
the open unit disc D ⊂ R2. We denote by Dδ the discretisation D ∩ δZ2.

Exercise 1. Coupling and stochastic domination
(1) Recall the Markov Chain for the Ising model that you have seen in class (the Glauber dynamics).

Solution. The Markov Chain you have seen consists of the following steps:
(a) Start from an arbitrary configuration,
(b) Make random flips:

(i) Compute the energy of the current configuration Hσ.
(ii) Pick a vertex x at random, consider the configuration ρ obtained by flipping the spin x of σ, and

compute its energy Hρ

(iii) If Hρ ≤ Hσ, replace σ by ρ. If Hρ > Hσ, replace σ by ρ with probability e−βHρ/e−βHσ .

(2) Consider the following Heat Bath Dynamics :
(a) Pick a vertex x at random,
(b) Sample the spin σx at random by giving probability

P (σx = 1) =
e−βH(σ+)

e−βH(σ+) + e−βH(σ−)

where σ+ and σ− denote the configuration σ with the spin σx forced to be +1 and −1 respectively.
Prove that the Ising measure is the invariant probability measure of this dynamics. Hint: check the detailed
balance equation.

Solution. We will prove the detailed balance equation :

πIsing (σ)PHeatBath (σ, ρ) = πIsing (ρ)PHeatBath (ρ, σ) .

If ρ is not of the form σ+ or σ−, the detailed balance equation is trivially true since PHeatBath (σ, ρ) =
PHeatBath (ρ, σ) = 0. Now, let us suppose there exists a vertex x such that ρ = σ+ , then

πIsing (σ)PHeatBath (σ, ρ) = πIsing (σ)PHeatBath

(
σ, σ+

)
=

e−βH(σ)

Z

e−βH(σ+)

e−βH(σ+) + e−βH(σ−)

and

πIsing (ρ)PHeatBath (ρ, σ) = πIsing

(
σ+

)
PHeatBath

(
σ+, σ

)
=

e−βH(σ+)

Z

e−βH(σ)

e−βH(σ+) + e−βH(σ−)
.

This proves that the detailed balance equation is valid and the Ising measure is the invariant probability
measure of this dynamics.

(3) We define a partial ordering between spin configurations σ ∈ {±1}Dδ : σ ≤ σ′ if σa ≤ σ′
a for all a ∈ Dδ.

Suppose that we start the chain at a common temperature β > 0 on two starting configurations σ0 ≤ σ′0 .
Show that we can couple the two dynamics such that this ordering is preserved at each step of the Markov
Chain, that is

σn ≤ σ′n

for all the time steps n ∈ N.

Solution. We will define two Markov Chain σn and σ′n starting from σ0 and σ′0 by using the Heat Bath
Dynamics and:
(a) picking the same vertex x at random for the two Markov Chain,
(b) sampling the spin σn+1

x and σ′n+1
x using the same underlying uniform random variable: we consider

U ∼ Uni ([0, 1]) and we define

σn+1
x = 1 if U ≤ e−βH(σn+)

e−βH(σn+) + e−βH(σn−)

and σn+1
x = −1 if not,

σ′n+1
x = 1 if U ≤ e−βH(σ′n+)

e−βH(σ′n+) + e−βH(σ′n−)
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and σ
′n+1
x = −1 if not.

If we prove that at any time e
−βH(σn+)

e−βH(σn+)+e−βH(σn−) ≤ e
−βH(σ′n+)

e−βH(σ′n+)+e−βH(σ′n−) then by induction we can con-
clude that σn ≤ σ′n. In order to prove the first inequality, we only need to prove that

e−βH(σn+) + e−βH(σn−)

e−βH(σn+)
≥ e−βH(σ′n+) + e−βH(σ′n−)

e−βH(σ′n+)

or
e−βH(σn−)

e−βH(σn+)
≥ e−βH(σ′n−)

e−βH(σ′n+)
.

Let us remark that for a configuration σ and any site x,

e−βH(σ−)

e−βH(σ+)
= eβ(−

∑
a∼b σ+

a σ+
b +

∑
a∼b σ−

a σ−
b )

(Be careful, the energy H is equal to −
∑

x∼y σxσy. Do not forget the − sign), yet σ+ and σ− only differs
at x, thus it is equal to e−2β

∑
a∼x σa . This implies that

e−βH(σn−)

e−βH(σn+)
= e−2β

∑
a∼x σn

a ≥ e−2β
∑

a∼x σ′
a
n

=
e−βH(σ′n−)

e−βH(σ′n+)
,

which allows us to conclude.

Exercise 2. Monotonicity property for the boundary conditions
Show that if b1, b2 ∈ {±1}∂Dδ are boundary conditions such that b1 ≤ b2 (which means that for any element x

of the boundary b1(x) ≤ b2(x)). Then the corresponding Ising measures satisfy:

Eβ
Dδ;b1

(σa) ≤ Eβ
Dδ;b2

(σa)

for any a ∈ Dδ. Hint: Use the Markov chain dynamics seen in the previous exercise; the boundary spins remain
unchanged.

Solution. One just has to use the same coupling of Markov chains (where we never pick x on the boundary) as in
the previous exercise, with similar initial condition except for the boundary where one begins with b1 and b2. The
result follows from the general fact about Markov chains that the Glauber or Heat bath dynamics converge to the
Ising measure over spin configurations.

Exercise 3. Low-temperature expansion

The aim of this exercise is to show that there exists 0 < β < ∞ (large enough) such that

lim inf
δ→0

Eβ
Dδ,+

(
σ(0,0)

)
≥ 0.99.

Let us fix δ, we will show that Pβ
Dδ,+

(
σ(0,0) = −1

)
≤ ϵ(β) where ϵ(β) → 0 as β → ∞ is a function independent

of δ.
(1) Verify that showing Pβ

Dδ,+

(
σ(0,0) = −1

)
≤ ϵ(β) is already enough to prove lim infδ→0 Eβ

Dδ,+

(
σ(0,0)

)
≥ 0.99.

Solution. We have Eβ
Dδ,+

(
σ(0,0)

)
= Pβ

Dδ,+

(
σ(0,0) = 1

)
− Pβ

Dδ,+

(
σ(0,0) = −1

)
= 1− 2Pβ

Dδ,+

(
σ(0,0) = −1

)
≥

1− 2ϵ(β). To get the desired estimate, it suffices to choose β large enough such that 2ϵ(β) < 0.01.

(2) Recall the partition function of the Ising model on Dδ with + boundary conditions:

ZDδ,+ =
∑

σ∈{±1}Dδ,+

eβ
∑

xy∈E σxσy .

Using the relation
∑

xy∈E σxσy = |E|−
∑

xy∈E(1−σxσy), express the Hamiltonian and the partition function
in terms of the loops of σ.

Solution. We have:

HDδ,+(σ) = −
∑

{x,y}∈E

σxσy = −|E|+
∑

{x,y}∈E

1− σxσy = −|E|+
∑

{x,y}∈E,σx ̸=σy

2 = −|E|+ 2|{{x, y} ∈ E , σx ̸= σy}|.

As we have seen in the lecture, each configuration σ defines a set of loops in the dual graph of Dδ, each
loop edge corresponds to an original edge between vertices whose spins differ; we denote this set of loops
as C(σ). We can thus rewrite the last sum as:
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HDδ,+(σ) = −|E|+ 2
∑

γ∈C(σ)

|γ|.

Thus, the partition function can be expressed as:

Z =
∑

σ∈{±1}Dδ,+

eβ|E|−2β
∑

γ∈C(σ) |γ| = eβ|E|
∑

σ∈{±1}Dδ,+

∏
γ∈C(σ)

e−2β|γ|.

Notice that when we consider the probability of a particular configuration σ using this expression, the term
eβ|E| cancels out in the numerator and denominator, so we can disregard it.

(3) What is en equivalent way to describe the event σ(0,0) = −1 in terms of the contours surrounding (0, 0)?
Conclude that Pβ

Dδ,+

(
σ(0,0) = −1

)
≤ Pβ

Dδ,+
(∃γ∗ ∈ C(σ) a loop surrounding(0, 0)). Hint: What has to be the

parity of the number of loops?

Solution. In order for σ(0,0) = −1, the vertex (0, 0) has to be surrounded by an odd number of loops. This
in particular implies, that there needs to exist at least one loop surrounding (0,0).

(4) Let us fix a particular loop γ∗ which surrounds (0, 0). Show that∑
σ:γ∗∈C(σ)

∏
γ∈C(σ)\{γ∗} e

−2β|γ|∑
σ′
∏

γ′∈C(σ′) e
−2β|γ′| ≤ 1.

Solution. We will show that the numerator is less than or equal to the denominator as follows: for every con-
figuration σ that contains the loop γ∗ we construct a new configuration σ′ such that

∏
γ∈C(σ)\{γ∗} e

−2β|γ| =∏
γ′∈C(σ′) e

−2β|γ′|. In other words, we want σ′ to have the exact same loops as σ, just without γ∗. To
construct σ′, simply take σ and flip all the spins in the interior of the γ∗ loop; it is not hard to see that the
resulting configuration σ′ will have all the loops as σ, except for γ∗. Moreover, from the construction, it is
apparent that the mapping σ 7→ σ′ is injective. Thus, each product

∏
γ∈C(σ)\{γ∗} e

−2β|γ| in the numerator
is also present in the denominator as

∏
γ′∈C(σ′) e

−2β|γ′|which concludes the proof.

(5) Show that Pβ
Dδ,+

(
σ(0,0) = −1

)
is bounded above by

∑
ℓ≥1 ℓ4

ℓe−2βℓ.

Solution. We have that:

Pβ
Dδ,+

(
σ(0,0) = −1

)
≤ Pβ

Dδ,+
(∃γ∗ ∈ C(σ) a loop surrounding(0, 0)) ≤

∑
γ∗

Pβ
Dδ,+

(γ∗) =
∑
γ∗

∑
σ:γ∗∈C(σ)

Pβ
Dδ,+

(σ)

Using (2), we can rewrite the probability of σ in terms of its contours:∑
γ∗

∑
σ:γ∗∈C(σ)

Pβ
Dδ,+

(σ) =
∑
γ∗

∑
σ:γ∗∈C(σ)

∏
γ∈C(σ) e

−2β|γ|∑
σ′
∏

γ′∈C(σ′) e
−2β|γ′| =

∑
γ∗

e−2β|γ∗|

∑
σ:γ∗∈C(σ)

∏
γ∈C(σ)\{γ∗} e

−2β|γ|∑
σ′
∏

γ′∈C(σ′) e
−2β|γ′| ≤

∑
γ∗

e−2β|γ∗|.

Where the last inequality uses point (4). Now, it remains to estimate the number of loops around (0, 0)
with a fixed length l (you have seen this result in the lecture as well as in Exercise sheet 8, exercise 3.).
This gives the final inequality ∑

γ∗

e−2β|γ∗| ≤
∑
ℓ≥1

ℓ4ℓe−2βℓ.

(6) Conclude that there exists 0 < β < ∞ (large enough) such that

lim inf
δ→0

Eβ
Dδ,+

(
σ(0,0)

)
≥ 0.99.

Solution. Since
∑

ℓ≥1 ℓ4
ℓe−2βℓ converges to 0 as β → ∞ we have shown that Pβ

Dδ,+

(
σ(0,0) = −1

)
≤ ϵ(β)

where ϵ(β) → 0 as β → ∞ is a function independent of δ. Thus, using (1), the proof is finished.


