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Let Ω ⊆ Z2 where Ω is a bounded, connected open subset of the plane. Let V denote the vertices and E the
edges of Ω.

Exercise 1. High-temperature expansion and positive correlations
(1) Recall the high-temperature expansion of the Ising model. Concretely, describe Z∅

Ω,β and E∅
Ω,β [σxσy] for

x, y ∈ V.

Solution. The high-temperature expansion for the partition function and the insertion of two spins is:

Z∅
Ω,β =

∑
σ

e−βH(σ) = (coshβ)
|E|

2|V|
∑
E∈C

tanh(β)|E|

E∅
Ω,β [σxσy] =

∑
σ

σxσye
−βH(σ) = (coshβ)

|E|
2|V|

∑
E∈Cx,y

tanh(β)|E|

where C is the collection of edge sets such that every vertex is incident to an even number of edges and Cx,y
is the collection of edge sets where every vertex is incident to an even number of edges except for x and y
which are incident to an odd number of edges (i.e. C is the set of set of loops and Cx,y is the set of loops
with a path x ↔ y) .

(2) Show that for any inverse temperature β ∈ (0,∞), we have

∀x, y ∈ V, E∅
Ω,β [σxσy] > 0.

Solution. We have that E∅
Ω,β [σxσy] =

∑
σxσye

−βH(σ)∑
σ e−βH(σ) =

∑
E∈Cx,y

tanh(β)|E|∑
E∈C tanh(β)|E| > 0 since every term in

∑
E∈Cx,y

tanh(β)|E|

and
∑

E∈C tanh(β)
|E| is positive and the sum in the numerator is non-empty.

Exercise 2. Kramers-Wannier duality
Consider the Ising model on Ω with free boundary conditions, at the self-dual inverse temperature βc =

1
2 ln

(
1 +

√
2
)
. Fix two neighbouring vertices x, y ∈ V connected by the edge e = {x, y} ∈ E. Write C ⊆ 2E

for the collection of subsets E ⊆E such that every vertex is incident to an even (possibly zero) number of edges in
E (informally, E is a set of loops formed by elements of E). Similarly, write Cx,y for the collection of Ex,y ⊆ E such
that every vertex except for x, y is incident to an even number of edges in Ex,y, while x and y are both incident to
an odd number of edges in Ex,y. Write

Z (C) =
∑
E∈C

exp (−2βc |E|) =
∑
E∈C

(tanhβc)
|E|

, Z (Cx,y) =
∑

Ex,y∈Cx,y

exp (−2βc |Ex,y|) .

(1) Express the spin correlation E∅
Ω,βc

[σxσy] of two neighbouring vertices x, y in terms of Z (C) and Z (Cx,y).

Solution. The spin correlation E∅
Ω,βc

[σxσy] =
∑

σ σxσye
−βH(σ)∑

σ e−βH(σ) , and using the high-temperature expansion
this gives:

E∅
Ω,βc

[σxσy] =
Z(Cx,y)
Z(C)

.

(2) Recall Kramers-Wannier duality.

Solution. The Kramers-Wannier duality can be formulated starting from an Ising model with free boundary
conditions at arbitrary inverse temperature β on the graph Ω = (V,E). The duality consists in obtaining
an Ising model with + boundary conditions at inverse temperature β∗ on the dual graph Ω∗ = (V∗,E∗),
where
(a) the parameter β∗ satisfies the relations

exp(−2β∗) = tanh(β) ⇐⇒ sinh(β∗) sinh(β) = 1,

which in particular implies that β∗(β) is decreasing in β and β∗(β) = β ⇐⇒ β = βc :=
1
2 ln(

√
2+1),

(b) V∗ is the set of faces of Ω and E∗ is the set of dual edges (pairs of faces sharing an edge in E).

Using the high-temperature expansion of the partition function Z∅
Ω,β of the Ising model on Ω = (V,E)

and the low-temperature expansion of the partition function Z+
Ω∗,β∗ on Ω∗ = (V∗,E∗) we get:
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low-temperature expansion ofZ+
Ω∗,β∗ : Z+

Ω∗,β∗ = eβ
∗|E∗|

∑
σ∈{±1}Ω∗

∏
γ∈C(σ)

e−2β∗|γ|

high-temperature expansion ofZ∅
Ω,β : Z∅

Ω,β = cosh(β)|E|2|V|
∑
E∈C

tanh(β)|E|

where C(σ) is the set of loops in Ω defined by the edges connecting spins of σ with different values
and where C is the collection of sets of loops in Ω. Thus, {C(σ) | σ ∈ ±1Ω

∗
} = {E | E ∈ C} since both

sides describe the collection of sets of loops on Ω. We can rewrite the high-temperature expansion as
Z∅
Ω,β = (coshβ)

|E|
2|V|

∑
σ∈{±1}Ω∗

∏
γ∈C(σ) tanh(β)

|γ|.

For β satisfying tanh(β) = e−2β∗|γ| we thus get the following expressions:

low-temperature expansion ofZ+
Ω∗,β∗ : Z+

Ω∗,β∗ = eβ
∗|E∗|

∑
σ∈{±1}Ω∗

∏
γ∈C(σ)

e−2β∗|γ|

high-temperature expansion ofZ∅
Ω,β : Z∅

Ω,β = cosh(β)|E|2|V|
∑

σ∈{±1}Ω∗

∏
γ∈C(σ)

e−2β∗|γ|.

Hence we have that
e−β∗|E∗|Z+

Ω∗,β∗ = cosh(β)−|E|2−|V|Z∅
Ω,β .

Remark. Assuming that Ω is a “reasonable domain” such as a large enough square, we have that |E∗| ≈
|E| ≈ 2|V|, and after a bit of rewriting we obtain: tanh(β)|V| cosh(β)|V|2|V|Z+

Ω∗,β∗ ≈ ZΩ,β . For the critical
inverse temperature βc it holds: tanh(βc) cosh(βc)2 = 1. Thus, the dual model has the same partition
function as the original model. One can further show (though it is not obvious at this point at all) that
for the critical inverse temperature βc the two limiting models are essentially the same, and have the same
limiting probability distribution.

(3) Now, write C = Ce ∪ C−e where Ce is the collection of E ∈ C with e ∈ E and C−e = C \ Ce. Decompose the
sum Z = Z (C−e) + Z (Ce) . By Kramers-Wannier duality, we have a dual Ising model on the faces of the
lattice with + boundary conditions. Suppose the two faces separated by e are denoted f1,f2. Recall the
low temperature expansion: what are the probabilities

P+
Ω∗,βc

[σf1 = σf2 ] , P+
Ω∗,βc

[σf1 ̸= σf2 ]

in terms of Z (C) , Z (Ce) , Z (C−e) ? What is E+
Ω∗,βc

[σf1σf2 ] ?

Solution. In the low-temperature expansion, we put an edge between two spins if and only if they disagree.
Thus, we must put an edge between f1 and f2 if and only if σf1 ̸= σf2 . Thus P+

Ω∗,βc
[σf1 = σf2 ] =

Z(C−e)
Z(C)

and P+
Ω∗,βc

[σf1 ̸= σf2 ] =
Z(Ce)
Z(C) . Now the value of E+

Ω∗,βc
[σf1σf2 ] is given by

E+
Ω∗,βc

[σf1σf2 ] = P+
Ω∗,βc

[σf1 = σf2 ]− P+
Ω∗,βc

[σf1 ̸= σf2 ] =
Z(C−e)

Z(C)
− Z(Ce)

Z(C)
.

(4) Note that there is a bijection from C to Cx,y : given E ∈ Ce, E \{e} ∈ Cx,y, and given E ∈ C−e, E ∪{e} ∈ Cx,y.
This also means there is a one-to-one correspondence between the terms of Z (C) = Z (Ce) + Z (C−e) and
Z (Cx,y) . Express Z (Cx,y) in terms of Z (Ce) and Z (C−e).

Solution. We have

Z(Cx,y) =
∑

Ex,y∈Cx,y

exp (−2βc |Ex,y|)

=
∑

E∈C−e

exp (−2βc |E ∪ {e}|) +
∑
E∈Ce

exp (−2βc |E \ {e}|)

=
∑

E∈C−e

e−2βc exp (−2βc |E|) +
∑
E∈Ce

e+2βc exp (−2βc |E|)

which gives
Z(Cx,y) = e2βcZ(Ce) + e−2βcZ(C−e).

(5) Assuming that as we take progressively larger Ω ⊆ Z2 , E∅
Ω,βc

(σxσy) and E+
Ω∗,βc

(σf1σf2) both tend to a
single positive number µ, compute µ by using the above results.
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Solution. We showed that

E∅
Ω,βc

[σxσy] =
Z(Cx,y)
Z(C)

= e2βc
Z(Ce)

Z(C)
+ e−2βc

Z(C−e)

Z(C)
and

E+
Ω∗,βc

[σf1σf2 ] =
Z(C−e)

Z(C)
− Z(Ce)

Z(C)
.

Let us suppose that E∅
Ω,βc

(σxσy) = E+
Ω∗,βc

(σf1σf2). We get the equation

Z(C−e)

Z(C)
− Z(Ce)

Z(C)
= e2βc

Z(Ce)

Z(C)
+ e−2βc

Z(C−e)

Z(C)
.

Let us remark that we also have
Z(C−e)

Z(C)
+

Z(Ce)

Z(C)
= 1.

This results in a system of two equations with two unknowns, which solution is Z(C−e)
Z(C) = 2+

√
2

4 and
Z(Ce)
Z(C) = 2−

√
2

4 . Hence we obtain

µ =
Z(C−e)

Z(C)
− Z(Ce)

Z(C)
=

√
2

2
.

Exercise 3. β → ∞ and boundary conditions

Consider the Ising model on the lattice Z2∩ [0, N ] 2 with + spins on the boundary vertices {−1}× [0, N ]∪ [0, N ]×
{N + 1} and − spins on the boundary vertices {N + 1} × [0, N ] ∪ [0, N ]× {−1}. Describe the β → ∞ limit of the
model.

Hint: in a previous exercises sheet, you already studied the β → ∞ limit of an Ising model with free boundary
conditions. What is the limiting distribution? Use the low temperature expansion to study the limit, and use a
combinatorial argument to count the number of configurations which have a non-zero probability.

Solution. We have already seen that the β → ∞ limit of this model is given by the uniform measure on the
configurations with lowest energy (Exercise 2 Sheet 11). We just have to understand what are these configurations
and how many they are. In order to do so, we consider the low temperature expansion: we draw edges separating
opposite spins and we get a representation of the spin configurations as edge sets E ∈ 2E

∗
(where E∗ is the set

of edges in the dual). The energy is given by 2|E|, and for any configuration, we see a path from the left-bottom
corner to the right-top corner and some loops. For any lowest energy configuration there will not be a loop since
it would only add more energy. Thus we have the following combinatorial problem: if we have an N ×N square,
how many shortest length edge-paths are there from the left-bottom corner to the right-top corner? Starting from
the left-bottom corner, we either go up or right by one edge: we need to do N up moves and N right moves. So

there are
(

2N
N

)
such paths; a corresponding spin configuration has plus spins above the path and minus below.

As β → ∞, Ising probabilities are uniformly distributed across the
(

2N
N

)
such configurations.


