Let $\Omega \subseteq \mathbb{Z}^2$ be the discretization of a bounded, connected open subset of the plane. Let \mathbb{V} denote the vertices and \mathbb{E} the edges of Ω .

Exercise 1. *High-temperature expansion and positive correlations*

Consider the Ising model on Ω with free boundary conditions and inverse temperature β .

- (1) Recall the high-temperature expansion of the Ising model. Concretely, describe $Z_{\Omega,\beta}^{\emptyset}$ and $\mathbb{E}_{\Omega,\beta}^{\emptyset}[\sigma_x \sigma_y]$ for $x, y \in \mathbb{V}.$
- (2) Show that for any inverse temperature $\beta \in (0, \infty)$, we have

$$\forall x, y \in \mathbb{V}, \ \mathbb{E}_{\Omega,\beta}^{\emptyset} [\sigma_x \sigma_y] > 0.$$

Exercise 2. Kramers-Wannier duality

Consider the Ising model on Ω with free boundary conditions, at the self-dual inverse temperature β_c = $\frac{1}{2}\ln(1+\sqrt{2})$. Fix two neighbouring vertices $x,y \in \mathbb{V}$ connected by the edge $e = \{x,y\} \in \mathbb{E}$. Write $\mathcal{C} \subseteq 2^{E}$ for the collection of subsets $\mathcal{E} \subseteq \mathbb{E}$ such that every vertex is incident to an even (possibly zero) number of edges in \mathcal{E} (informally, \mathcal{E} is a set of loops formed by elements of \mathbb{E}). Similarly, write $\mathcal{C}_{x,y}$ for the collection of $\mathcal{E}_{x,y}$ such that every vertex except for x, y is incident to an even number of edges in $\mathcal{E}_{x,y}$, while x and y are both incident to an odd number of edges in $\mathcal{E}_{x,y}$. Write

$$Z(\mathcal{C}) = \sum_{\mathcal{E}\in\mathcal{C}} \exp\left(-2\beta_c \left|\mathcal{E}\right|\right) = \sum_{\mathcal{E}\in\mathcal{C}} \left(\tanh\beta_c\right)^{|\mathcal{E}|}, \quad Z(\mathcal{C}_{x,y}) = \sum_{\mathcal{E}_{x,y}\in\mathcal{C}_{x,y}} \exp\left(-2\beta_c \left|\mathcal{E}_{x,y}\right|\right)$$

- (1) Express the spin correlation $\mathbb{E}_{\Omega,\beta_c}^{\emptyset}[\sigma_x \sigma_y]$ of two neighbouring vertices x, y in terms of $Z(\mathcal{C})$ and $Z(\mathcal{C}_{x,y})$.
- (2) Recall Kramers-Wannier duality.
- (3) Now, write $\mathcal{C} = \mathcal{C}^e \cup \mathcal{C}^{-e}$ where \mathcal{C}^e is the collection of $\mathcal{E} \in \mathcal{C}$ with $e \in \mathcal{E}$ and $\mathcal{C}^{-e} = \mathcal{C} \setminus \mathcal{C}^e$. Decompose the sum $Z = Z(\mathcal{C}^{-e}) + Z(\mathcal{C}^{e})$. By Kramers-Wannier duality, we have a dual Ising model on the faces of the lattice with + boundary conditions. Suppose the two faces separated by e are denoted f_1, f_2 . Recall the low temperature expansion: what are the probabilities

$$\mathbb{P}^+_{\Omega^*,\beta_c}\left[\sigma_{f_1}=\sigma_{f_2}\right], \ \mathbb{P}^+_{\Omega^*,\beta_c}\left[\sigma_{f_1}\neq\sigma_{f_2}\right]$$

- in terms of $Z(\mathcal{C})$, $Z(\mathcal{C}^e)$, $Z(\mathcal{C}^{-e})$? What is $\mathbb{E}^+_{\Omega^*,\beta_c}[\sigma_{f_1}\sigma_{f_2}]$? (4) Note that there is a bijection from \mathcal{C} to $\mathcal{C}_{x,y}$: given $\mathcal{E} \in \mathcal{C}^e, \mathcal{E} \setminus \{e\} \in \mathcal{C}_{x,y}$, and given $\mathcal{E} \in \mathcal{C}^{-e}, \mathcal{E} \cup \{e\} \in \mathcal{C}_{x,y}$. This also means there is a one-to-one correspondence between the terms of $Z(\mathcal{C}) = Z(\mathcal{C}^e) + Z(\mathcal{C}^{-e})$ and $Z(\mathcal{C}_{x,y})$. Express $Z(\mathcal{C}_{x,y})$ in terms of $Z(\mathcal{C}^e)$ and $Z(\mathcal{C}^{-e})$.
- (5) Assuming that as we take progressively larger $\Omega \subseteq \mathbb{Z}^2$, $\mathbb{E}^{\emptyset}_{\Omega,\beta_c}(\sigma_x \sigma_y)$ and $\mathbb{E}^+_{\Omega^*,\beta_c}(\sigma_{f_1} \sigma_{f_2})$ both tend to a single positive number μ , compute μ by using the above results.

Exercise 3. $\beta \to \infty$ and boundary conditions

Consider the Ising model on the lattice $\mathbb{Z}^2 \cap [0, N]^2$ with + spins on the boundary vertices $\{-1\} \times [0, N] \cup [0, N] \times [0, N]$ $\{N+1\}$ and - spins on the boundary vertices $\{N+1\} \times [0,N] \cup [0,N] \times \{-1\}$. Describe the $\beta \to \infty$ limit of the model.

Hint: in a previous exercises sheet, you already studied the $\beta \to \infty$ limit of an Ising model with free boundary conditions. What is the limiting distribution? Use the low temperature expansion to study the limit, and use a combinatorial argument to count the number of configurations which have a non-zero probability.