Exercise 1. Neumann boundary conditions and Dirichlet boundary conditions

Let us consider the rectangle $A = [[1, n]] \times [[1, m]]$ in \mathbb{Z}^2 , and its boundary ∂A which is the set of vertices in \mathbb{Z}^2 \ A adjacent to a vertex of A. We define the normal derivative at $y \in \partial A$ as :

$$
\partial_{n} f(y) = f(x) - f(y),
$$

where x is the unique neighbour of y in A. We denote by ∂A , ∂A , $\overline{\partial A}$ and $|\partial A|$ the 4 parts of the boundary, respectively the lower horizontal, the right most vertical, the upper horizontal and the left-most vertical parts of ∂A.

(1) Prove that the problem

$$
\begin{cases}\n\Delta f(x) = 0 & \text{in } A \\
f(y) = 0 & \text{on } \partial A \\
f(y) = 1 & \text{on } \partial A \\
\partial_n f(y) = 0 & \text{on } \partial A \quad \forall \, \partial A\n\end{cases}
$$

has a unique solution if any.

- (2) Let us consider the simple random walk on $A\cup\partial A$ ($x\in A$ and $y\in\partial A$ are linked by an edge if y is adjacent to x in \mathbb{Z}^2 , two points of ∂A are not linked by an edge). Is $\tau_{\partial A\cup \overline{\partial A}}$, the hitting time for $\underline{\partial A} \cup \overline{\partial A}$, finite almost surely ?
- (3) Give an explicit formulation of the unique solution of the discrete PDE in terms of random walks. What is the difference with the pure Dirichlet conditions ?

Remark. We used a mix of conditions in order to have a finite stopping time. Yet, one can solve the Neumann problem with pure Neumann boundary conditions. In this case, the boundary conditions must satisfy some additional conditions for a solution to exist, and the solution is unique only up to a constant. This is slightly more technical. (Section 6.7 of https://www.math.uchicago.edu/~lawler/srwbook.pdf)

Remark. Actually we considered a rectangle for simplicity, but one can do the same with any discretisation of any domain Ω with 4 points marked on the boundary in counterclockwise order a, b, c and d and with Dirichlet boundary conditions on [a, b], [c, d] and Neumann conditions on [b, c], [d, e]. Then the solution would be the imaginary part of the discretisation of the conformal mapping which sends the domain Ω to a rectangle $[0, L] \times [0, i]$ (for some L) which sends a, b, c, d to the corners of the rectangle.

Exercise 2. Green's function representation by determinant

We consider $A \subseteq \mathbb{Z}^d$ finite. The goal of this exercise is to prove that if $x_1, \dots, x_n \in A$ and $A_k = A \setminus \{x_1, \dots, x_k\}$ then

$$
G_A(x_1,x_1) G_{A_1}(x_2,x_2) \cdots G_{A_{n-1}}(x_n,x_n)
$$

is independent of the order of x_1, \ldots, x_n .

Remark. For this exercise sheet, we will consider :

$$
\Delta^{+} f(x) = f(x) - \frac{1}{2d} \sum_{y \sim x} f(y)
$$

 $(\Delta^+ = -\Delta$ is the positive definite operator).

(1) We can consider Δ^+ as a linear operator $\Delta^+_A:\mathbb{R}^A\to\mathbb{R}^A$, by considering a vector on A as a function on $A \cup \partial A$ such that $f \restriction_{\partial A} = 0$. Show that :

$$
G_A(x,x) = \frac{\det \Delta^+_{A \setminus \{x\}}}{\det \Delta^+_A}.
$$

Hint. Think about Cramer's rule for describing inverse matrices.

(2) If $x_1, \dots, x_n \in A$ and $A_k = A \setminus \{x_1, \dots, x_k\}$, give the value of

 $G_A(x_1,x_1) G_{A_1}(x_2,x_2) \cdots G_{A_{n-1}}(x_n,x_n)$

and prove that it is independent of the order of x_1, \dots, x_n .

Remark. If M is a matrix, we denote by $M^{i,j}$ the matrix obtained by deleting the *i*-th row and *j*-column of M. We also denote by $M^{i,j}$ the matrix obtained by deleting only the *i*-th row of M. The cofactor det^{i,j} M is $(-1)^{i+j} \det M^{i,j}.$

Let G be a connected graph with n vertices and m edges (here an edge is a couple of vertices, in particular, we do not consider the case where two vertices are related by two or more edges). Recall that a spanning tree of G is a connected subgraph of G with no loop and which covers all vertices of G. Let us give a unique number between 1 and n to each vertex and a unique number between 1 and m to each edge. For this exercise, we denote by $\tilde{\Delta}_G$ the matrix defined by:

$$
\tilde{\Delta}_G(i,j) = \delta_{i,j} \deg(i) - \delta_{j \sim i}
$$

,

where $1 \leq i, j \leq n$ denote vertices of G and $\deg(i)$ is the degree of i.

We will prove Kirchhoff's theorem :

Kirchhoff's theorem : # {spanning trees of G} = $\det^{i,j} (\tilde{\Delta}_G)$

Actually, we will only show that $\#\{\text{spanning trees of G}\} = \det^{1,1}(\tilde{\Delta}_G)$, the general case can be deduced using elementary linear algebra arguments.

- (1) Let the $n \times m$ incidence matrix E such that the only non zero elements are given by the following: if the k-th edge goes between i and j and $i < j$ then $E_{ik} = 1$ and $E_{jk} = -1$. Show that $\tilde{\Delta}_G = E E^T$, where E^T is the transpose of E .
- (2) Show that $\tilde{\Delta}_{G}^{1,1} = E^{1,\dots}(E^{1,\dots})^{\text{T}}$.
- (3) Prove that $m \geq n-1$ i.e. the matrix $E^{1, \cdot}$ has a horizontal shape more than a vertical shape.
- (4) Recall the Cauchy-Binet formula which says that if A and B are two matrices of size $l \times k$ and $k \times l$ then

$$
\det\left(AB\right) = \sum_{S \subset [k], \#S = l} \det\left(A_{[l],S}\right) \det\left(B_{S,[l]}\right)
$$

where $[k] = \{1, \ldots, k\}, A_{S,[k]}$ is the matrix obtained by choosing the rows in S and the columns in [k]. Use this formula to show that

$$
\det \tilde{\Delta}_{G}^{1,1} = \sum_{S \subset [m], \#S = n-1} \det \left(\left(E^{1,\cdot} \right)_{[n-1],S} \right)^2.
$$

(5) What represents a choice of $S \subset [m]$ in the original graph G ? We want to show that S forms a spanning tree of G if and only if $\det((E^{1,\cdot})_{[n-1],S}) = \pm 1$, and if it does not form a spanning tree then

det $((E^{1,\cdot})_{[n-1],S}) = 0.$

- (a) Show that if S is not a spanning tree, then there exists a cycle in S .
- (b) Show that if S is not a spanning tree then det $((E^{1,\cdot})_{[n-1],S}) = 0$.
- (c) Let us suppose that S is a spanning tree. Consider the vertex 1 and an edge e in S connected to 1 and to a vertex i. Prove that

$$
\det\left(\left(E^{1,\cdot}\right)_{[n-1],S}\right)=\pm\det\left(\left(E^{1,\cdot}\right)_{[n-1]\setminus\{i-1\},S\setminus\{e\}}\right).
$$

(d) Conclude that if S is a spanning tree, then det $((E^1, \cdot)_{[n-1],S}) = \pm 1$.

(6) Prove Kirchhoff's theorem.

(7) How do you write the number # {spanning trees of G} using the Laplacian Δ_G ?