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Exercise 1. General knowledge
(1) Let h be a harmonic function on C. Prove that there exists a holomorphic function f such that h = ℜ (f).

Hint : Prove that if f exists, f ′(w) = ∂xh−i∂yh. Use the fact that a holomorphic function can be integrated.
Conclude.

Solution. We consider h a harmonic function on C. The strategy is to define f such that f (0) = h (0) by
finding an holomorphic function ∂zf and setting

f (z) = h (0) +

∫
γ

f ′ (w) dw

where γ is any path going from 0 to z, and where the integral is well defined by holomorphicity of f ′.

If f is a holomorphic function with real part h and imaginary part g, then

2 · ∂zf = ∂xf − i∂yf = (∂xh+ ∂yg) + i (∂xg − ∂yh)

Moreover if f is a holomorphic function it satisfies the Cauchy-Riemann equations or equivalently

0 = 2 · ∂zf = ∂xf + i∂yf = (∂xh− ∂yg) + i (∂xg + ∂yh)

Thus
∂zf = f ′ = ∂xh− i∂yh

Hence we have a candidate for f ′ given by ∂xh− i∂yh.
With this definition f ′ is holomorphic since

∂z∂zf =
1

2
(∂x + i∂y) (∂xh− i∂yh) =

1

2

(
∂2
xh+ ∂2

yh
)
=

1

2
∆h = 0.

Thus f defined above is holomorphic as it is the integral of a holomorphic function.
Finally f has real part R(f) = h since f(0) = h(0) and ∂xh = ∂xR(f) and ∂yh = ∂yR(f). But the

holomorphicity of f implies that ∂zf = ∂xf = i∂yf, hence we have ∂xR(f) = R(∂xf) = R(∂zf) = ∂xh and
similarly, ∂yR(f) = R(∂yf) = R(i∂zf) = −I(∂zf) = ∂yh.

(2) Let A = A ∪ ∂A be a connected finite graph and let ω = x0 →
e1

x1 →
e2

. . . →
en

xn be a non-self-intersecting

path in A such that w ∩ ∂A = {xn} . Describe the set of paths Γ = Γ(ω) in A such that if γ ∈ Γ the loop
erased path obtained from γ is ω. What is the difference between paths in Γ and trajectories of RW from
x0 stopped at first visit in ∂A and such that the corresponding LERW is ω?

Solution. Let ω = x0 → x1 → . . . → xn be a non-self-intersecting path. Any path γ such that the loop
erased path obtained from γ is ω is of the form :

γ : x0 →
ℓ0

x0 →
e1

x1 →
ℓ1

x1 →
e2

x2 → . . . →
en

xn →
ℓn

xn

where ℓi is a loop in A \ {x0, . . . , xi−1} based at xi.
If ω is a sample of the LERW from x0 to xn ∈ ∂A stopped at first visit in ∂A, then the corresponding

random walk trajectory is of the form of γ above with the additional constraints that ℓi is actually a loop
in A \ {x0, . . . , xi−1} and ℓn is the empty loop.

(3) The Laplacian random walk (LARW) started at v is the law of a walk started at v whose first step consists
in choosing a neighbour w ∼ v with probability

HA\{v} (w, ∂A)∑
w′∼v HA\{v} (w′, ∂A)

and if it already did k steps v1, . . . , vk, then the next step is to choose a neighbour w ∼ vk with probability
HA\{v1,...,vk} (w, ∂A)∑

w′∼v HA\{v1,...,vk} (w
′, ∂A)

where we recall that H is the harmonic measure and HA\{v1,...,vk} (w, ∂A) denotes the harmonic measure
on A \ {v1, . . . , vk} with boundary ∂A ∪ {v1, . . . , vk} .
(a) Similarly to the previous question, characterize the set of paths Γ ending on ∂A such that if γ ∈ Γ, the

loop erased path obtained from γ begins with ω = x0 →
e1

x1 →
e2

. . . →
ek

xk.
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Solution. A path γ is in Γ if it is of the form

γ : x0 →
ℓ0

x0 →
e1

x1 →
ℓ1

x1 →
e2

x2 → . . . →
ek

xk →
π

y

where ℓi is a loop in A \ {x0, . . . , xi−1} based at xi and π is a path from xk to any y ∈ ∂A which is in
A \ {x0, . . . , xk−1} except for the last point.

(b) Consider the next step that a LERW and a LARW have to take after doing k steps, and prove that
LERW and a LARW have the same law. Hint : in order to understand the first k steps of a LERW γ,
we need to consider the whole path π which finishes on ∂A and such that the loop erased path associated
to π is γ. Use the previous question to describe the set of such π.

Solution. We need only to consider the next step that a LERW ω do after doing k steps x1, . . . , xk. The
probability that it goes to xk+1 is

P (ωk+1 = xk+1|ω1 = x1, . . . ωk = xk) =
1

P (ω1 = x1, . . . ωk = xk)

∑
γ,LERW (γ)|[1,k+1]=(x1,...,xk+1)

p (γ)

=
1

P (ω1 = x1, . . . ωk = xk)

∑
γ:x0→

ℓ0
x0→

e1
x1→

ℓ1
x1→

e2
x2→...xk →

ek+1
xk+1→

π
y

p (γ)

where we have the same conditions as above for the loops and paths (in particular π only hits ∂A at its
endpoint y and does not hit {x0, . . . , xk}) and where p (γ) is the probability that the simple random walk
follows γ. Considering only the parts which depend on xk+1, and using the notation ∼ to say that it is
proportional to (with the same constant for any xk+1), we have:

P (ωk+1 = xk+1|ω1 = x1, . . . ωk = xk) ∼
∑

xk →
ek+1

xk+1→
π
y

p (γ) ∼ p (xk, xk+1)
∑

xk+1→
π
y

p (γ) ∼
∑

xk+1→
π
y

p (γ)

where we recall that π goes from xk+1 to y and only hits ∂A at its endpoint y and does not hit {x0, . . . , xk}.
But the last expression

∑
xk+1→

π
y p (γ) is precisely HA\{x0,...,xk} (xk+1, ∂A) , hence

P (ωk+1 = xk+1|ω1 = x1, . . . ωk = xk) ∼ HA\{x0,...,xk} (xk+1, ∂A) .

This allows us to conclude.

Exercise 2. New proof of Wilson’s theorem & New proof of Kirchhoff’s theorem.
Let us consider a finite connected graph A with n+1 vertices. We will allow ourselves to use generalizations (to

any finite connected graph) of the results proven this week.
(1) Show that under Wilson’s algorithm, the probability of obtaining a spanning tree T by starting at the root

vertex v0 = x then visiting the other vertices in the order v1, . . . vn is

GA0 (v1, v1)

deg (v1)

GA1
(v2, v2)

deg (v2)
. . .

GAn−1
(vn, vn)

deg (vn)

where Ai = V (A) \ {v0, . . . , vi} and GA stands for the Green function for A. Note that GAi
: A → R

considers the vertices v0, . . . , vi to be now the graph’s boundary. Hint : simply consider the first branch of
the tree, and consider the probability that a loop erased random walk gives this branch.

Solution. We only need to consider the first branch of the tree, the rest is done similarly. Thus we
need to understand the probability that a LERW stopped when hitting v0 is equal to ω = v1 →

e1
. . . →

ek−1

vk = v0. We have seen that the set Γ of paths of the simple random walk whose loop erasure gives ω is
Γ = Lv1 (A \ {v0}) .

∏
i ei.Lvi+1 (A \ {v0, v1, . . . , vi}) where the product denotes the concatenation of paths

and Lv (A) is the set of loops in A based at v. Thus

P (LERW (γ) = ω) =
∑
γ∈Γ

p (γ)

where p (γ) is the probability that the simple random walk follows γ, and the γ on the l.h.s. is a simple
random walk. Using the description of Γ and the multiplicativity of p:
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P (LERW (γ) = ω) =

 ∑
ℓ1∈Lv1 (A\{v0})

p (ℓ1)

 p (e1)

 ∑
ℓ2∈Lv2 (A\{v0,v1})

p (ℓ2)

 . . . p (ek−1)

 ∑
ℓk∈Lvk

(A\{v0,v1,...,vk−1})

p (ℓk)


Recall that  ∑

ℓ1∈Lv1 (A\{v0})

p (ℓ1)

 = GV (A)\{v0} (v1, v1)

... ∑
ℓk∈Lvk

(A\{v0,v1,...,vk−1})

p (ℓk)

 = GV (A)\{v0,v1,...,vk−1} (vk, vk) .

Besides, p (ek) is the probability that a simple random walk starting at vk goes to vk+1 after one step : it
is equal to 1

deg(vk)
. Thus, we get the desired result:

P (LERW (γ) = ω) =
GA0

(v1, v1)

deg (v1)

GA1
(v2, v2)

deg (v2)
. . .

GAk−1
(vk, vk)

deg (vk)
.

By running the rest of Wilson’s algorithm, we get the formula for the probability of obtaining a spanning
tree T by starting at the root vertex v0 = x then visiting the other vertices in the order v1, . . . vn :

GA0 (v1, v1)

deg (v1)

GA1 (v2, v2)

deg (v2)
. . .

GAn−1
(vn, vn)

deg (vn)

(2) Prove Wilson’s theorem, i.e. Wilson’s algorithm samples uniform spanning trees.

Solution. Recall that in the Wilson’s algorithm, we have considered an order on the vertices and the
algorithm follows this order when it has to pick a new starting point for the LERW. Given that this order
is denoted by v1, . . . , vn (and v0 is the root) we just proved that :

P (Wilson’s algo samples T ) =
GA0

(v1, v1)

deg (v1)

GA1
(v2, v2)

deg (v2)
. . .

GAn−1 (vn, vn)

deg (vn)
.

But for an other tree T ′, it will also visit all the vertices of G but in an other order : v′1, . . . , v
′
n. Using the

(generalization) of the result of exercise 2 last week we get:

P (Wilson’s algo samples T ) =
GA0 (v1, v1)

deg (v1)

GA1 (v2, v2)

deg (v2)
. . .

GAn−1
(vn, vn)

deg (vn)

=
GA′

0
(v′1, v

′
1)

deg (v′1)

GA′
1
(v′2, v

′
2)

deg (v′2)
. . .

GA′
n−1

(v′n, v
′
n)

deg (v′n)

= P (Wilson’s algo samples T ′)

This proves that Wilson’s algorithm samples a uniform spanning tree.

(3) Prove Kirchhoff’s theorem, i.e

# {spanning trees of A} =

n∏
i=1

deg (vi) det
(
−∆1,1

A

)
,

where ∆A is the Laplace operator on A (and A is a graph with n+ 1 vertices v0, v1, . . . , vn).

Solution. If we have a finite set Ω, and if P is the uniform probability, for any ω ∈ Ω,

P (ω) =
1

#Ω
.

Thus, since Wilson’s algorithm samples a uniform spanning tree, and since we know P (Wilson algo samples T ),
we get that

# {spanning trees of A} =
1

P (Wilson algo samples T )
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which is equal to
n∏

i=1

deg (vi)

(
n∏

i=1

GAi−1 (vi, vi)

)−1

.

By the results of last week, and using the same notations, the latter expression is equal to
n∏

i=1

deg (vi) det
(
−∆1,1

A

)
which allows to conclude.


