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Exercise 1. Coupling
(1) Let 0 < p′ < p < 1, let Xp be a Bernoulli (p) random variable. How can you sample Xp′ ∼ Ber (p′) using

Xp and one other Bernoulli random variable Y , so that Xp′ ≤ Xp?

Solution. Let Xp be a Bernoulli(p) random variable. We need to discard the result with a certain proba-
bility when Xp = 1. Let us consider Y a Bernoulli random variable of parameter q. Let us consider XpY :
it is also a Bernoulli random variable since it takes only 0− 1 values. Let us compute its parameter :

E (XpY ) = E (Xp)E (Y ) = pq

Thus, if Y ∼ Ber
(

p′

p

)
then XpY ∼ Ber (p′) and by definition XpY ≤ Xp.

(2) Let us consider an infinite random sequence of independent Bernoulli(p). How can you create an infinite
random sequence of independent Bernoulli

(
1
2

)
?

Remark. This means that if you do not trust the coin of somebody, you can still create a fair “head/tail”
process.

Solution. Let us consider two random variables X1 and X2 which are two independent Bernoulli(p) random
variables. Let us write the probabilities for the couple (X1, X2):

X1, X2 : 1, 1 0, 1 1, 0 0, 0
P p2 p− p2 p− p2 1− 2p+ p2

The probabilities to get (0, 1) or (1, 0) are equal : thus we condition on the fact that (X1, X2) ∈ {(0, 1) , (1, 0)}
and we set {

Y = 0 if (X1, X2) = (0, 1)

Y = 1 if (X1, X2)=(1, 0)

If we consider an infinite number of independent pairs of independent Bernoulli(p),
((

Xi
1, X

i
2

)
i∈N

)
then we

consider τ1 the first time where (Xτ1
1 , Xτ1

2 ) ∈ {(0,1) , (1, 0)} and we set{
Y1 = 0 if (Xτ1

1 , Xτ1
2 ) = (0, 1)

Y1 = 1 if (Xτ1
1 , Xτ1

2 )=(1, 0)

and we define similarly Yi for any i ≥ n. The sequence (Yi)i∈N is an infinite random sequence of independent
Bernoulli

(
1
2

)
.

(3) Let U be a random uniform variable in [0, 1]. How can you sample a Bernoulli(p) ?

Solution. We consider U a random uniform variable in [0, 1]. The random variable X = 11U≤p is a
Bernoulli(p) .

(4) Let us denote by Pp be the probability associated with the site percolation on some infinite lattice with
probability p (i.e. a site is open independently from the other with probability p). Show that

Pp (0⇝∞)

is increasing in p.

Solution. The idea is to use a coupling as for example defined in point 1. or, as used here, using point 3.
and a collection of independent uniform random variable associated to each vertices with mutual probability
P.

Let us therefore consider (Ux)x∈V a family of independent uniform random variables on [0, 1]. If we
define

(Xp
x = 11Ux≤p)x∈V

we recover a site percolation of parameter p. If p increases, then almost surely (in fact for all events) for
any x ∈ V we have that Xp

x increases and thus{
ω ∈ Ω, 0⇝∞ for (Xp

x)x∈V

}
⊂

{
ω ∈ Ω, 0⇝∞ for

(
Xp′

x

)
x∈V

}
if p ≤ p′. Thus p 7→ Pp (0⇝∞) = P

(
0⇝∞ for (Xp

x)x∈V

)
is increasing.

1



2

Exercise 2. Connective constant of graphs
In this exercise we will only work with the graph Z2 but the result generalizes easily for any regular graph. We

want to define a probability measure on the set of self-avoiding random walks (i.e. on the set of paths ω such that
ω (i) ̸= ω (j) for any i ̸= j) of the form:

Pβ (ω) =
1

Zβ
e−β|ω|,

where |ω| is the length of ω and β ∈ R is a parameter. In order to do so, we need to understand Zβ : if it is infinite,
we cannot define this probability measure, if it is finite, we can. We will admit the following lemma (that you can
try to prove):
Lemma. Let {an}n≥1 be a sequence of positive real numbers such that:

(1) there exists c ≥ 1, an ≥ cn for any n,
(2) for any n, p ≥ 1, an+p ≤ anap.

Then there exists µ ≥ c such that a
1
n
n → µ when n → ∞. Besides, infn (an)

1
n = µ.

(1) What should be the value of Zβ ? Hint: we want a probability measure.

Solution. We want Pβ to be a probability measure, thus:∑
ω

Pβ (ω) =
1

Zβ

∑
ω

e−β|ω| = 1,

hence Zβ =
∑

ω e−β|ω|.

(2) Let us define by λN the number of simple walks of size N which start at 0. What is the limit of (λN )
1
N as

N goes to infinity?

Solution. The number of simple random walks of size N which start at 0 is equal to 4N , hence (λN )
1
N = 4,

which in particular converges to 4 as N goes to infinity.

(3) Let us define by µN the number of self-avoiding walks of size N which start at 0. Prove that (µN )
1
N

converges as N goes to infinity to a number µ ≥ 2 which is called the connective constant of the lattice.

Solution. We will use the lemma given at the beginning of the exercise, we need to prove that for any
n, p ≥ 1 that

µn+p ≤ µnµp.

Hence, we need to prove that

# {ω, |ω| ≤ n+ p} ≤ # {ω, |ω| ≤ n} .# {ω, |ω| ≤ p}

where any ω is a self-avoiding walk. But if ω is a self-avoiding walk of length n + p, then ω[1...n], and
ω[n+1,...,n+p] are two self-avoiding walks of length n and p. This implies the previous inequality.

Besides, if we consider paths which only go up or to the right, we see that µn ≥ 2n. Using the lemma at
the beginning of the exercise, this implies that µ

1
n
n converges as n goes to infinity towards a number µ ≥ 2.

(4) Deduce that there exists βc such that

β > βc ⇐⇒ Zβ < ∞.

Give the value of βc = βc (µ).

Solution. The number Zβ =
∑

ω e−β|ω| =
∑

n µne
−βn =

∑
n

(
(µn)

1
n e−β

)n

is finite if and only if the limit

of (µn)
1
n e−β is strictly less than 1. Indeed, if limn (µn)

1
n e−β > 1 then the sum is clearly infinite, and if the

limit is equal to 1, then recall the lemma at the beginning of the exercise : we know that

lim
n

(
(µn)

1
n e−β

)
= inf

n

(
(µn)

1
n e−β

)
thus it means that infn (µn)

1
n e−β ≥ 1 and thus the sum is also infinite.

Thus the sum is finite if and only if µe−β < 1, this implies that βc = lnµ.

Remark. The connective constant of the honneycomb lattice has been computed in 2010 by H. Duminil-Copin and
S. Smirnov with an elegant 6 pages proof (https://arxiv.org/pdf/1007.0575.pdf), using parafermionic observables.
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Exercise 3. From sites to edges and back
For any graph G = (V,E) , the edge path is given by a sequence of edges (e1, . . . , en) such that every consecutive

pair shares a vertex. A vertex path (v1, . . . , vn) is a sequence of vertices such that each consecutive pair is connected
by an edge.

(1) Show that for each G = (V,E) there exists a graph G′ = (V ′, E′) and a bijection ϕ : E → V ′ which yields
a correspondence between edge paths in G and vertex paths in G′.

Remark. This allows us to translate questions about edge percolation on G to questions about site perco-
lation on G′.

Solution. We consider the graph G′ = (V ′, E′) with V ′ = E and (e, e′) ∈ E′ for any e ∈ E and e′ ∈ E
which share a vertex. We can consider the canonical bijection ϕ : E → V ′ = E. If there exists an edge path
(e1, e2, . . . , en) then since ei+1 must share a vertex with ei, this means that ϕ (ei+1) is linked to ϕ (ei) in G′.
Thus ϕ (e1) , . . . , ϕ (en) is a vertex path in G′. It is also true that if there exists a vertex path (v1, . . . , vn)
in G′, then

(
ϕ−1(v1), . . . , ϕ

−1(vn)
)

is also an edge path in G.

(2) What is the modified graph associated with Z2 ?

Solution. Any edge e is replaced by a vertex (we consider the midpoint of e). Two edges (i.e. two
midpoints) are connected either if the two edges are adjacent and orthogonal, or adjacent and parallel. In
the first case, the links that we need to add give a graph similar to Z2 and rotated by π

4 . The second types
of edges are the diagonals of one out of two squares.

(3) Think of an example of a graph G′ = (V ′, E′) such that there exists no graph G = (V,E) without edges
that are self-looping and whose edge paths would correspond to vertex paths in G′.

Solution. We notice from 1. that if G is a graph without edges which are loops, the modified graph
associated with G′ has a special property: for any x ∈ G′, the set Nx of neighbours of x can be divided in
two sets N

(1)
x ⊔N

(2)
x where for any i ∈ {1, 2}, any vertices u, v ∈ N

(i)
x are linked by an edge (this is due to

the fact that any edge e ∈ G has two endpoints). This implies that for a graph G′ = (V ′, E′) not satisfying
this property there cannot exist G whose edge paths would correspond to vertex paths in G′.


