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Exercise 1. Coupling
(1) Let 0 < p′ < p < 1, let Xp be a Bernoulli (p) random variable. How can you sample Xp′ ∼ Ber (p′) using

Xp and one other Bernoulli random variable Y , so that Xp′ ≤ Xp?
(2) Let us consider an infinite random sequence of independent Bernoulli(p). How can you create an infinite

random sequence of independent Bernoulli
(
1
2

)
?

Remark. This means that if you do not trust the coin of somebody, you can still create a fair “head/tail”
process.
Hint: you need to consider a certain number of pairs of independent Bernoulli(p) random variables in order
to create one Bernoulli

(
1
2

)
random variable, consider one pair and try to see where 1/2 could appear.

(3) Let U be a random uniform variable in [0, 1]. How can you sample a Bernoulli(p) ?
(4) Let us denote by Pp be the probability associated with the site percolation on some infinite lattice with

probability p (i.e. a site is open independently from the other with probability p). Show that

Pp (0⇝∞)

is increasing in p.

Exercise 2. Connective constant of graphs
In this exercise we will only work with the graph Z2 but the result generalizes easily for any regular graph. We

want to define a probability measure on the set of self-avoiding random walks (i.e. on the set of paths ω such that
ω (i) ̸= ω (j) for any i ̸= j) of the form:

Pβ (ω) =
1

Zβ
e−β|ω|,

where |ω| is the length of ω and β ∈ R is a parameter. In order to do so, we need to understand Zβ : if it is infinite,
we cannot define this probability measure, if it is finite, we can. We will admit the following lemma (that you can
try to prove):
Lemma. Let {an}n≥1 be a sequence of positive real numbers such that:

(1) there exists c ≥ 1, an ≥ cn for any n,
(2) for any n, p ≥ 1, an+p ≤ anap.

Then there exists µ ≥ c such that a
1
n
n → µ when n → ∞. Besides, infn (an)

1
n = µ.

(1) What should be the value of Zβ ? Hint: we want a probability measure.
(2) Let us define by λN the number of simple walks of size N which start at 0. What is the limit of (λN )

1
N as

N goes to infinity?
(3) Let us define by µN the number of self-avoiding walks of size N which start at 0. Prove that (µN )

1
N

converges as N goes to infinity to a number µ ≥ 2 which is called the connective constant of the lattice.
(4) Deduce that there exists βc such that

β > βc ⇐⇒ Zβ < ∞.

Give the value of βc = βc (µ).

Remark. The connective constant of the honneycomb lattice has been computed in 2010 by H. Duminil-Copin and
S. Smirnov with an elegant 6 pages proof (https://arxiv.org/pdf/1007.0575.pdf), using parafermionic observables.

Exercise 3. From sites to edges and back
For any graph G = (V,E) , the edge path is given by a sequence of edges (e1, . . . , en) such that every consecutive

pair shares a vertex. A vertex path (v1, . . . , vn) is a sequence of vertices such that each consecutive pair is connected
by an edge.

(1) Show that for each G = (V,E) there exists a graph G′ = (V ′, E′) and a bijection ϕ : E → V ′ which yields
a correspondence between edge paths in G and vertex paths in G′.

Remark. This allows us to translate questions about edge percolation on G to questions about site perco-
lation on G′.

(2) What is the modified graph associated with Z2 ?
1
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(3) Think of an example of a graph G′ = (V ′, E′) such that there exists no graph G = (V,E) without edges
that are self-looping and whose edge paths would correspond to vertex paths in G′.


