Exercise 1. Coupling

- (1) Let $0 < p' < p < 1$, let X_p be a Bernoulli (p) random variable. How can you sample $X_{p'} \sim Ber(p')$ using X_p and one other Bernoulli random variable Y, so that $X_{p'} \leq X_p$?
- (2) Let us consider an infinite random sequence of independent Bernoulli (p) . How can you create an infinite random sequence of independent Bernoulli $\left(\frac{1}{2}\right)$?

Remark. This means that if you do not trust the coin of somebody, you can still create a fair "head/tail" process.

Hint: you need to consider a certain number of pairs of independent Bernoulli(p) random variables in order to create one Bernoulli $(\frac{1}{2})$ random variable, consider one pair and try to see where $1/2$ could appear.

- (3) Let U be a random uniform variable in [0, 1]. How can you sample a Bernoulli(p)?
- (4) Let us denote by \mathbb{P}_p be the probability associated with the site percolation on some infinite lattice with probability p (i.e. a site is open independently from the other with probability p). Show that

$$
\mathbb{P}_p(0 \leadsto \infty)
$$

is increasing in p.

Exercise 2. Connective constant of graphs

In this exercise we will only work with the graph \mathbb{Z}^2 but the result generalizes easily for any regular graph. We want to define a probability measure on the set of self-avoiding random walks (i.e. on the set of paths ω such that $\omega(i) \neq \omega(j)$ for any $i \neq j$) of the form:

$$
P_{\beta}(\omega) = \frac{1}{Z_{\beta}}e^{-\beta|\omega|},
$$

where $|\omega|$ is the length of ω and $\beta \in \mathbb{R}$ is a parameter. In order to do so, we need to understand Z_{β} : if it is infinite, we cannot define this probability measure, if it is finite, we can. We will admit the following lemma (that you can try to prove):

Lemma. Let $\{a_n\}_{n>1}$ be a sequence of positive real numbers such that:

- (1) there exists $c \geq 1$, $a_n \geq c^n$ for any n,
- (2) for any $n, p \geq 1$, $a_{n+p} \leq a_n a_p$.

Then there exists $\mu \geq c$ such that $a_n^{\frac{1}{n}} \to \mu$ when $n \to \infty$. Besides, $\inf_n (a_n)^{\frac{1}{n}} = \mu$.

- (1) What should be the value of Z_β ? Hint: we want a probability measure.
- (2) Let us define by λ_N the number of simple walks of size N which start at 0. What is the limit of $(\lambda_N)^{\frac{1}{N}}$ as N goes to infinity?
- (3) Let us define by μ_N the number of self-avoiding walks of size N which start at 0. Prove that $(\mu_N)^{\frac{1}{N}}$ converges as N goes to infinity to a number $\mu \geq 2$ which is called the connective constant of the lattice.
- (4) Deduce that there exists β_c such that

$$
\beta > \beta_c \iff Z_{\beta} < \infty.
$$

Give the value of $\beta_c = \beta_c(\mu)$.

Remark. The connective constant of the honneycomb lattice has been computed in 2010 by H. Duminil-Copin and S. Smirnov with an elegant 6 pages proof (https://arxiv.org/pdf/1007.0575.pdf), using parafermionic observables.

Exercise 3. From sites to edges and back

For any graph $G = (V, E)$, the *edge path* is given by a sequence of edges (e_1, \ldots, e_n) such that every consecutive pair shares a vertex. A vertex path (v_1, \ldots, v_n) is a sequence of vertices such that each consecutive pair is connected by an edge.

(1) Show that for each $G = (V, E)$ there exists a graph $G' = (V', E')$ and a bijection $\phi : E \to V'$ which yields a correspondence between edge paths in G and vertex paths in G' .

Remark. This allows us to translate questions about edge percolation on G to questions about site percolation on G' .

(2) What is the modified graph associated with \mathbb{Z}^2 ?

(3) Think of an example of a graph $G' = (V', E')$ such that there exists no graph $G = (V, E)$ without edges that are self-looping and whose edge paths would correspond to vertex paths in G' .