
LATTICE MODELS SOLUTION SHEET 8 EPFL AUTUMN 2024

Exercise 1. Getting familiar with dual graphs: Euler’s theorem
A graph G= (V,E) is planar, if it can be embedded in the plane; i.e., if you can draw it on a plane in such a way

that its edges intersect only at the endpoints. A face is any region delimited by a set of edges (usually, there is one
“outer unbounded region” which is considered a face also).

For a planar graph we define its dual G′= (V′,E′) that has a vertex for each face of G and has an edge for each
pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on
both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e.

(1) Show that there is a natural bijection between E and E′.

Solution. This bijection is already described in the definition above: each edge e of G has a corresponding
dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e.

(2) Let T be a spanning tree of G and let us consider its edge complement T c = E \ T . Show that edges in the
dual graph corresponding to T c also form a spanning tree.

Solution. Let us denote by T ′ the subgraph in G′ induced by T c. Notice that if T contained a loop, this
would isolate a set of faces in T ′. So since T does not contain any loop, each vertex in the dual graph is in
one connected component of T ′. Similarly, if T ′ contained a loop, the loop would isolate a set of vertices
of G and T could not be spanning the whole graph. Hence, T ′ is loop-less and thus, a spanning tree in the
dual graph.

(3) Remember that each tree with k vertices has k − 1 edges.

Solution. Each tree has a leaf. By induction on the size of the tree, one obtains the statement.

(4) Using the dual graph, prove Euler’s formula; i.e. let V, E, F denote the number of vertices, edges, and faces
of G, respectively; show that V − E + F = 2.

Solution. We pick a spanning tree T of G and by E(T ) we denote the number of edges of T . Then,
E = E(T ) +E(T c). Using (3) we know that V = E(T ) + 1. Using (2), we know that T c is a spanning tree
of the dual graph, and thus F = E(T c) + 1. Together, this gives that E = V + F − 2.

Recall that if G is a graph, V is the set of vertices of G, and E is the set of edges of G, if p ∈ [0, 1] , we can consider:
(1) the vertex (or site) percolation, which is a percolation on the vertices of G. It means we consider (Xv)v∈V

a sequence of i.i.d. Bernoulli random variables of parameter p.
(2) the bond (or edge) percolation, which is a percolation on the edges of G. It means we consider (Xe)e∈E a

sequence of i.i.d. Bernoulli random variables of parameter p.
In a site percolation, a path is composed of nearest neighbours whose labels are equal to 1, whereas in the bond
percolation, a path is a concatenation of edges whose labels are equal to 1.

Exercise 2. Probability θ (p)
Let us consider the bond percolation on Zd of parameter p ∈ [0, 1]. We therefore consider i.i.d Bernoulli random

variables (Xe)e∈Ed of parameter p where Ed is the edge set of Zd. If Xe = 1 we say that the edge is open.
The critical probability pc is such that if p > pc, then there almost surely exists an infinite open cluster in the

percolation of parameter p, and if p < pc there almost surely exists no infinite open cluster in the percolation of
parameter p.

We define
θ (p) = Pp (0 → ∞)

where by 0 → ∞ we mean that 0 belongs to an infinite open cluster.
(1) Show that Pp (∃ infinite open cluster) = 0 or 1. Hint : Think about a general theorem which involves 0 and

1.

Solution. You just need to use the Kolmogorov’s zero-one law since the event {∃ infinite open cluster} is
a tail event: even if you change the labelling (the 0 or the 1) in a finite box, you will not change the fact
that there exists or not an infinite open cluster.

(2) Recall why p → Pp (∃ infinite open cluster) is non-decreasing. What is the value of this function at p = 0
and 1? Deduce that pc exists.
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Solution. This is non-decreasing because we can use a coupling argument. We consider (Ue)e∈Ed some
[0, 1] uniform random variables which are independent, and we define Xp

e = 11Ue≤p for any edge and any
p ≥ 0. Then for any p, (Xp

e )e is a percolation of parameters p and when p increases, we just add some new
edges (i.e. their label changes from 0 to 1). Thus when p increases, if there was already an infinite open
cluster, this cluster will remain. This implies that p → Pp (∃ infinite open cluster) is non-decreasing.

When p = 0, there is no open edge and thus no open cluster : P0 (∃ infinite open cluster) = 0. When
p = 1, there are only open edges and thus Zd is an open cluster : P1 (∃ infinite open cluster) = 1. Thus,
the function p → Pp (∃ infinite open cluster) begins at 0, takes only values in {0, 1}, is non-decreasing, and
finishes at 0. This implies that there exists a pc such that if p < pc then Pp (∃ infinite open cluster) = 0
and if p > pc then Pp (∃ infinite open cluster) = 1.

(3) Show that θ (p) > 0 ⇐⇒ Pp (∃ infinite open cluster) = 1.

Solution. Let us show that θ (p) > 0 =⇒ Pp (∃ infinite open cluster) = 1. If θ (p) > 0 this means that
there is a strictly positive probability that 0 belongs to an infinite open cluster. In particular, there is a
strictly positive probability that there exists an infinite open cluster. Thus Pp (∃ infinite open cluster) > 0.
But we have seen that Pp (∃ infinite open cluster) ∈ {0, 1}. Thus Pp (∃ infinite open cluster) = 1.

Let us show now that θ (p) > 0 ⇐= Pp (∃ infinite open cluster) = 1. Instead, let us prove the equiv-
alent assertion that θ (p) = 0 =⇒ Pp (∃ infinite open cluster) = 0. If θ (p) = 0, this means that the
probability that 0 is in an infinite cluster is zero. By translation invariance, this implies that the prob-
ability that any vertex v belongs to an infinite cluster is also zero. But {∃ infinite open cluster} =
∪v {v belongs to an infinite open cluster}. The union of events of probability zero has also a probability
which is zero. This implies that P {∃ infinite open cluster} = 0.

(4) Show that p → θ (p) is right continuous. Hint : Use some exchange of limits.

Solution. We consider the box Bn = [−n, n] × [−n, n], and the function p → θn (p) = Pp (0⇝ ∂Bn). We
see that
(a) the function θn (p) is non decreasing in p (using the point 2.) and are continuous (since we are

considering a finite box),
(b) at p fixed, θn (p) is non increasing in n (since the events are more and more difficult to achieve as n

goes to infinity).
This implies that if we consider (pk)k a decreasing sequence converging to p, we have

θ (p) = inf
n

θn (p) = inf
n

inf
k
θn (pk) = inf

k
inf
n

θn (pk) = inf
k
θ (pk)

where we used (in order), the point (b), the point (a), inversion of infimums (since by (a) and (b) θn(pk) is
non-increasing both when n → ∞ and k → ∞) and the point (b) at last.

(5) Draw the shape of θ (p): can we say anything for now at p = pc?

Solution. By (3) θ is 0 between 0 and pc and positive and right continuous between pc and 1 with θ(1) = 1.
For now, we do not know if θ (p) jumps or not at pc (in fact, it does not).

Remark. Similar arguments can be applied to site percolation on “gentle” infinite graphs, typically the triangle
percolation.

Exercise 3. Existence of a phase transition for Zd for d ≥ 2 : pc ∈ (0, 1).

(1) We want to prove that θ (p) = 0 when p is small enough:
(a) Show that for all N ∈ N∗, Pp (0 → ∞) ≤ Pp (∃γ, self avoiding walk starting from 0 of length N which is open) .

Solution. If 0 is linked to infinity, it means that for all N ∈ N we can find a self avoiding walk starting
from 0 of length N which is open (it is almost the definition of 0 linked to infinity, except that you
might have considered paths of length N for any integer N , yet if you loop-erase all these paths, you
get a family of self avoiding walks which size is going to infinity). Thus for all N ∈ N

Pp (0 → ∞) ≤ Pp (∃γ, self avoiding walk starting from 0 of length N which is open) .

(b) Prove that if p < 1
µd

where µd ≤ 2d is the connectivity constant of Zd then Pp (0 → ∞) = 0. Deduce
that pc ≥ 1

µd
.
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Solution. If γ is a self avoiding walk starting from 0 of length N , the probability that it is open is
equal to p|γ|, since (Xe)e∈γ are i.i.d. Bernoulli of parameter p. Thus, using the previous inequality, we
get that for any N ,

Pp (0 → ∞) ≤ Pp (∃γ, self avoiding walk starting from 0 of length N which is open) .

≤ µNpN ,

where µN is the number of self-avoiding walks starting from 0 of length N . Yet recall that last week,
we have see that µ

1/N
N → µd the connectivity constant of the graph. If p < 1

µd
then limN (µN )

1
N p < 1

and thus there exists N such that for any n ≥ N ,(
µ1/n
n

)
p < 1− ϵ.

This implies that µNpN → 0 as N goes to infinity: Pp (0 → ∞) = 0. By point (3) of the previous
exercise, this also implies that pc ≥ 1

µd
.

We still consider the bond percolation of parameter p. We have shown that pc exists yet we have only shown that
pc ∈ [0, 1] . The goal is to prove that pc ∈ (0, 1). Recall that the connective constant (µ) of a graph was defined in
the previous exercise sheet (Exercise 2).

(1) We want to prove that θ (p) > 0 when p is big enough:
(a) Why do we only need to prove the case where d = 2 ?

Solution. If 0 is connected to infinity on the plane percolation with a certain probability, for higher
dimensions it will be connected to infinity with a bigger probability since there is even more space to
use to escape to infinity.

(b) Consider the dual graph of Z2: which graph is it ? Explain why a percolation on Z2 induces a natural
percolation on the dual graph (there should be two possibilities, but one is not really interesting if you
look at the next question and if you think about the crossing arguments in the square which were used
in the lesson). What is the parameter of the dual percolation ?

Solution. The dual graph of Z2 is simply a graph obtained by translating Z2. Naturally, there are
two possibilities to define a percolation on the dual graph using a percolation on Z2. Yet, one of these
two possibilities is not interesting, we will see why after.
Let us consider (Xe)e∈Ed , a bond percolation on Z2. For any edge e, we consider the dual edge e∗

which is the edge which cuts e in the dual graph. Then the two possibilities are:

∀e ∈ Ed, Xe∗ = Xe

∀e ∈ Ed, Xe∗ = 1−Xe

Yet, if you consider the next question, or if you think about the RSW estimate, we would like to have a
percolation on the dual lattice which tells you something when 0 is not in an infinite cluster, i.e. when
there is no crossing from 0 to infinity. Thus the dual percolation has to remember the lack of edges
instead of the presence of edges. This makes

∀e ∈ edges of Z2,Xe∗ = 1−Xe

more natural.
Now the parameter of this percolation is simply 1− p.

(c) Show that 0 is not in an infinite cluster if and only if there exists a self-avoiding cycle which surrounds
0 in the dual percolation.

Solution. If there exists a self-avoiding cycle which surrounds 0 in the dual percolation, this self-
avoiding cycle disconnect 0 to the infinity : we can not go through this self-avoiding cycle (by definition
of the dual percolation). Now, if 0 is not in an infinite cluster, then we can consider the cluster 0 belongs
to, and we can consider the boundary of this cluster (boundary here in the dual) This boundary is the
cycle we are looking for.

(d) Prove that
1− θ (p) ≤ C

∑
ℓ≥0

ℓ4ℓ (1− p)
ℓ
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where the constant C does not depend on p. Hint : I did not choose the letter ℓ for nothing, what can
it be ?

Solution. Let us remark that 1− θ (p) is the probability that 0 does not belong to an infinite cluster.
We have seen that 0 does not belong to an infinite cluster if and only if there exists a self-avoiding loop
which surrounds 0 in the dual percolation. Thus :

1− θ (p) ≤
∑

γ loops surround 0 in dual graph

P (γ open) .

We can split the sum into loops of length ℓ ≥ 0 :

∑
γ loops surround 0 in dual graph

P (γ open) =
∑
ℓ

∑
γ loops surround 0 in dual graph of length ℓ

P (γ open) .

Let us remark that P (γ open) = (1− p)
ℓ if γ is of length ℓ since the dual percolation is a percolation

of parameters 1− p.
Thus,∑
ℓ

∑
γ sur. 0 length ℓ

P (γ open) =
∑
ℓ

(1− p)
ℓ
# {loops of length ℓ sur. 0 in the dual graph}

We just have to find a bound on the number of loops of length ℓ which surround 0 . Yet since such a
loop surrounds 0 it must cross the x axis at a point which is at a maximal distance from 0 of order ℓ
(of order i.e. up to a multiplicative constant). Thus we can consider that the loop starts at a point
which is at a maximal distance from 0 of order ℓ (there are ℓ such points) and then it is of length ℓ:
there is still a maximum of 4ℓ choices of loops once we have chosen its starting points. Thus there
exists a constant C > 0 such that

# {loops of length ℓ surrounding 0 in the dual graph} ≤ Cℓ4ℓ

and therefore
1− θ (p) ≤ C

∑
ℓ≥0

ℓ4ℓ (1− p)
ℓ
= C

4(1− p)

(3− 4p)2
.

(e) Show that if p is big enough, θ (p) > 0.

Solution. If p is big enough then 1 − p is small enough and the r.h.s. will be smaller than 1. This
means that θ (p) > 0 if p is big enough.

(2) Summarize the result we got.

Solution. We proved that pc ∈ (0, 1).

Remark. Again similar arguments can be used for site percolation on “gentle” infinite graphs, typically the triangular
site percolation. One can show that for the triangle percolation, pc = 1

2 . In the following exercise sheets, we will
only consider the case pc =

1
2 .


